1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
use std::collections::{HashSet, VecDeque};
use geom::{Bounds, Distance, Polygon};
use map_gui::tools::Grid;
use map_model::Map;
use widgetry::{Color, GeomBatch};
use crate::{colors, Neighborhood};
const RESOLUTION_M: f64 = 10.0;
pub struct RenderCells {
polygons_per_cell: Vec<Vec<Polygon>>,
/// Colors per cell, such that adjacent cells are colored differently
pub colors: Vec<Color>,
}
struct RenderCellsBuilder {
/// The grid only covers the boundary polygon of the neighborhood. The values are cell indices,
/// and `Some(num_cells)` marks the boundary of the neighborhood.
grid: Grid<Option<usize>>,
colors: Vec<Color>,
/// Bounds of the neighborhood boundary polygon
bounds: Bounds,
boundary_polygon: Polygon,
}
impl RenderCells {
/// Partition a neighborhood's boundary polygon based on the cells. This discretizes space into
/// a grid, and then extracts a polygon from the raster. The results don't look perfect, but
/// it's fast.
pub fn new(map: &Map, neighborhood: &Neighborhood) -> RenderCells {
RenderCellsBuilder::new(map, neighborhood).finalize()
}
// TODO It'd look nicer to render the cells "underneath" the roads and intersections, at the
// layer where areas are shown now
pub fn draw(&self) -> GeomBatch {
let mut batch = GeomBatch::new();
for (color, polygons) in self.colors.iter().zip(self.polygons_per_cell.iter()) {
for poly in polygons {
batch.push(*color, poly.clone());
}
}
batch
}
/// Per cell, convert all polygons to a `geo::MultiPolygon`. Leave the coordinate system as map-space.
pub fn to_multipolygons(&self) -> Vec<geo::MultiPolygon<f64>> {
self.polygons_per_cell
.clone()
.into_iter()
.map(Polygon::union_all_into_multipolygon)
.collect()
}
}
impl RenderCellsBuilder {
fn new(map: &Map, neighborhood: &Neighborhood) -> RenderCellsBuilder {
let boundary_polygon = neighborhood
.orig_perimeter
.clone()
.to_block(map)
.unwrap()
.polygon;
// Make a 2D grid covering the polygon. Each tile in the grid contains a cell index, which
// will become a color by the end. None means no cell is assigned yet.
let bounds = boundary_polygon.get_bounds();
let mut grid: Grid<Option<usize>> = Grid::new(
(bounds.width() / RESOLUTION_M).ceil() as usize,
(bounds.height() / RESOLUTION_M).ceil() as usize,
None,
);
// Initially fill out the grid based on the roads in each cell
let mut warn_leak = true;
for (cell_idx, cell) in neighborhood.cells.iter().enumerate() {
for (r, interval) in &cell.roads {
let road = map.get_r(*r);
// Some roads with a filter are _very_ short, and this fails. The connecting roads
// on either side should contribute a grid cell and wind up fine.
if let Ok(slice) = road
.center_pts
.maybe_exact_slice(interval.start, interval.end)
{
// Walk along the center line. We could look at the road's thickness and fill
// out points based on that, but the diffusion should take care of it.
for (pt, _) in
slice.step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
{
let grid_idx = grid.idx(
((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
);
// Due to tunnels/bridges, sometimes a road belongs to a neighborhood, but
// leaks outside the neighborhood's boundary. Avoid crashing. The real fix
// is to better define boundaries in the face of z-order changes.
//
// Example is https://www.openstreetmap.org/way/87298633
if grid_idx >= grid.data.len() {
if warn_leak {
warn!(
"{} leaks outside its neighborhood's boundary polygon, near {}",
road.id, pt
);
// In some neighborhoods, there are so many warnings that logging
// causes noticeable slowdown!
warn_leak = false;
}
continue;
}
// If roads from two different cells are close enough to clobber
// originally, oh well?
grid.data[grid_idx] = Some(cell_idx);
}
}
}
}
// Also mark the boundary polygon, so we can prevent the diffusion from "leaking" outside
// the area. The grid covers the rectangular bounds of the polygon. Rather than make an
// enum with 3 cases, just assign a new index to mean "boundary."
let boundary_marker = neighborhood.cells.len();
for (pt, _) in
geom::PolyLine::unchecked_new(boundary_polygon.clone().into_ring().into_points())
.step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
{
// TODO Refactor helpers to transform between map-space and the grid tiles. Possibly
// Grid should know about this.
let grid_idx = grid.idx(
((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
);
grid.data[grid_idx] = Some(boundary_marker);
}
let adjacencies = diffusion(&mut grid, boundary_marker);
let mut cell_colors = color_cells(neighborhood.cells.len(), adjacencies);
// Color some special cells
for (idx, cell) in neighborhood.cells.iter().enumerate() {
if cell.is_disconnected() {
cell_colors[idx] = colors::DISCONNECTED_CELL;
}
}
RenderCellsBuilder {
grid,
colors: cell_colors,
bounds,
boundary_polygon,
}
}
fn finalize(self) -> RenderCells {
let mut result = RenderCells {
polygons_per_cell: Vec::new(),
colors: Vec::new(),
};
for (idx, color) in self.colors.into_iter().enumerate() {
// contour will find where the grid is >= a threshold value. The main grid has one
// number per cell, so we can't directly use it -- the area >= some cell index is
// meaningless. Per cell, make a new grid that just has that cell.
let grid: Grid<f64> = Grid {
width: self.grid.width,
height: self.grid.height,
data: self
.grid
.data
.iter()
.map(
|maybe_cell| {
if maybe_cell == &Some(idx) {
1.0
} else {
0.0
}
},
)
.collect(),
};
let smooth = false;
let c = contour::ContourBuilder::new(grid.width as u32, grid.height as u32, smooth);
let thresholds = vec![1.0];
let mut cell_polygons = Vec::new();
for feature in c.contours(&grid.data, &thresholds).unwrap() {
match feature.geometry.unwrap().value {
geojson::Value::MultiPolygon(polygons) => {
for p in polygons {
if let Ok(poly) = Polygon::from_geojson(&p) {
cell_polygons.push(
poly.scale(RESOLUTION_M)
.translate(self.bounds.min_x, self.bounds.min_y),
);
}
}
}
_ => unreachable!(),
}
}
// Sometimes one cell "leaks" out of the neighborhood boundary. Not sure why. But we
// can just clip the result.
let mut clipped = Vec::new();
for p in cell_polygons {
clipped.extend(p.intersection(&self.boundary_polygon));
}
result.polygons_per_cell.push(clipped);
result.colors.push(color);
}
result
}
}
/// Returns a set of adjacent indices. The pairs are symmetric -- (x, y) and (y, x) will both be
/// populated. Adjacency with boundary_marker doesn't count.
fn diffusion(grid: &mut Grid<Option<usize>>, boundary_marker: usize) -> HashSet<(usize, usize)> {
// Grid indices to propagate
let mut queue: VecDeque<usize> = VecDeque::new();
// Initially seed the queue with all colored tiles
for (idx, value) in grid.data.iter().enumerate() {
if let Some(x) = value {
// Don't expand the boundary tiles
if *x != boundary_marker {
queue.push_back(idx);
}
}
}
let mut adjacencies = HashSet::new();
while !queue.is_empty() {
let current_idx = queue.pop_front().unwrap();
let current_color = grid.data[current_idx].unwrap();
let (current_x, current_y) = grid.xy(current_idx);
// Don't flood to diagonal neighbors. That would usually result in "leaking" out past the
// boundary tiles when the boundary polygon isn't axis-aligned.
// TODO But this still does "leak" out sometimes -- the cell covering 22nd/Lynn, for
// example.
for (next_x, next_y) in grid.orthogonal_neighbors(current_x, current_y) {
let next_idx = grid.idx(next_x, next_y);
if let Some(prev_color) = grid.data[next_idx] {
// If the color doesn't match our current_color, we've found the border between two
// cells.
if current_color != prev_color
&& current_color != boundary_marker
&& prev_color != boundary_marker
{
adjacencies.insert((current_color, prev_color));
adjacencies.insert((prev_color, current_color));
}
// If a color has been assigned, don't flood any further.
} else {
grid.data[next_idx] = Some(current_color);
queue.push_back(next_idx);
}
}
}
adjacencies
}
fn color_cells(num_cells: usize, adjacencies: HashSet<(usize, usize)>) -> Vec<Color> {
// This is the same greedy logic as Perimeter::calculate_coloring
let mut assigned_colors = Vec::new();
for this_idx in 0..num_cells {
let mut available_colors: Vec<bool> =
std::iter::repeat(true).take(colors::CELLS.len()).collect();
// Find all neighbors
for other_idx in 0..num_cells {
if adjacencies.contains(&(this_idx, other_idx)) {
// We assign colors in order, so any neighbor index smaller than us has been
// chosen
if other_idx < this_idx {
available_colors[assigned_colors[other_idx]] = false;
}
}
}
if let Some(color) = available_colors.iter().position(|x| *x) {
assigned_colors.push(color);
} else {
warn!("color_cells ran out of colors");
assigned_colors.push(0);
}
}
assigned_colors
.into_iter()
.map(|idx| colors::CELLS[idx])
.collect()
}