1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
use std::collections::VecDeque;
use std::fmt;

use anyhow::Result;
use serde::{Deserialize, Serialize};

use geom::{Distance, Duration, PolyLine, Speed, EPSILON_DIST};

use crate::{BuildingID, LaneID, Map, PathConstraints, Position, Traversable, TurnID, UberTurn};

#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum PathStep {
    /// Original direction
    Lane(LaneID),
    /// Sidewalks only!
    ContraflowLane(LaneID),
    Turn(TurnID),
}

impl PathStep {
    pub fn as_traversable(&self) -> Traversable {
        match self {
            PathStep::Lane(id) => Traversable::Lane(*id),
            PathStep::ContraflowLane(id) => Traversable::Lane(*id),
            PathStep::Turn(id) => Traversable::Turn(*id),
        }
    }

    pub fn as_lane(&self) -> LaneID {
        self.as_traversable().as_lane()
    }

    pub fn as_turn(&self) -> TurnID {
        self.as_traversable().as_turn()
    }

    // start is relative to the start of the actual geometry -- so from the lane's real start for
    // ContraflowLane.
    fn exact_slice(
        &self,
        map: &Map,
        start: Distance,
        dist_ahead: Option<Distance>,
    ) -> Result<PolyLine> {
        if let Some(d) = dist_ahead {
            if d < Distance::ZERO {
                panic!("Negative dist_ahead?! {}", d);
            }
            if d == Distance::ZERO {
                bail!("0 dist ahead for slice");
            }
        }

        match self {
            PathStep::Lane(id) => {
                let pts = &map.get_l(*id).lane_center_pts;
                if let Some(d) = dist_ahead {
                    pts.maybe_exact_slice(start, start + d)
                } else {
                    pts.maybe_exact_slice(start, pts.length())
                }
            }
            PathStep::ContraflowLane(id) => {
                let pts = map.get_l(*id).lane_center_pts.reversed();
                let reversed_start = pts.length() - start;
                if let Some(d) = dist_ahead {
                    pts.maybe_exact_slice(reversed_start, reversed_start + d)
                } else {
                    pts.maybe_exact_slice(reversed_start, pts.length())
                }
            }
            PathStep::Turn(id) => {
                let pts = &map.get_t(*id).geom;
                if let Some(d) = dist_ahead {
                    pts.maybe_exact_slice(start, start + d)
                } else {
                    pts.maybe_exact_slice(start, pts.length())
                }
            }
        }
    }

    /// The single definitive place to determine how fast somebody could go along a single road or
    /// turn. This should be used for pathfinding and simulation.
    pub fn max_speed_along(
        &self,
        max_speed_on_flat_ground: Option<Speed>,
        constraints: PathConstraints,
        map: &Map,
    ) -> Speed {
        self.max_speed_and_incline_along(max_speed_on_flat_ground, constraints, map)
            .0
    }

    /// The single definitive place to determine how fast somebody could go along a single road or
    /// turn. This should be used for pathfinding and simulation. Returns (speed, percent incline).
    pub fn max_speed_and_incline_along(
        &self,
        max_speed_on_flat_ground: Option<Speed>,
        constraints: PathConstraints,
        map: &Map,
    ) -> (Speed, f64) {
        match self {
            PathStep::Lane(l) => Traversable::max_speed_along_road(
                map.get_l(*l).get_directed_parent(),
                max_speed_on_flat_ground,
                constraints,
                map,
            ),
            PathStep::ContraflowLane(l) => Traversable::max_speed_along_road(
                {
                    let mut dr = map.get_l(*l).get_directed_parent();
                    dr.dir = dr.dir.opposite();
                    dr
                },
                max_speed_on_flat_ground,
                constraints,
                map,
            ),
            PathStep::Turn(t) => (
                Traversable::max_speed_along_movement(
                    t.to_movement(map),
                    max_speed_on_flat_ground,
                    constraints,
                    map,
                ),
                0.0,
            ),
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub struct Path {
    steps: VecDeque<PathStep>,
    // The original request used to produce this path. Calling shift(), add(), modify_step(), etc
    // will NOT affect this.
    orig_req: PathRequest,

    // Also track progress along the original path.
    total_length: Distance,
    crossed_so_far: Distance,

    // A list of uber-turns encountered by this path, in order. The steps are flattened into the
    // sequence of turn->lane->...->turn.
    uber_turns: VecDeque<UberTurn>,
    // Is the current_step in the middle of an UberTurn?
    currently_inside_ut: Option<UberTurn>,

    blocked_starts: Vec<LaneID>,
}

impl Path {
    pub(crate) fn new(
        map: &Map,
        steps: Vec<PathStep>,
        orig_req: PathRequest,
        uber_turns: Vec<UberTurn>,
        blocked_starts: Vec<LaneID>,
    ) -> Path {
        // Haven't seen problems here in a very long time. Noticeably saves some time to skip.
        if false {
            validate_continuity(map, &steps);
        }
        if false {
            validate_restrictions(map, &steps);
        }
        if false {
            validate_zones(map, &steps, &orig_req);
        }
        let mut path = Path {
            steps: VecDeque::from(steps),
            orig_req,
            total_length: Distance::ZERO,
            crossed_so_far: Distance::ZERO,
            uber_turns: uber_turns.into_iter().collect(),
            currently_inside_ut: None,
            blocked_starts,
        };
        for step in &path.steps {
            path.total_length += path.dist_crossed_from_step(map, step);
        }
        path
    }

    /// Once we finish this PathStep, how much distance will be crossed? If the step is at the
    /// beginning or end of our path, then the full length may not be used.
    pub fn dist_crossed_from_step(&self, map: &Map, step: &PathStep) -> Distance {
        match step {
            PathStep::Lane(l) => {
                let lane = map.get_l(*l);
                if self.orig_req.start.lane() == lane.id {
                    lane.length() - self.orig_req.start.dist_along()
                } else if self.orig_req.end.lane() == lane.id {
                    self.orig_req.end.dist_along()
                } else {
                    lane.length()
                }
            }
            PathStep::ContraflowLane(l) => {
                let lane = map.get_l(*l);
                if self.orig_req.start.lane() == lane.id {
                    self.orig_req.start.dist_along()
                } else if self.orig_req.end.lane() == lane.id {
                    lane.length() - self.orig_req.end.dist_along()
                } else {
                    lane.length()
                }
            }
            PathStep::Turn(t) => map.get_t(*t).geom.length(),
        }
    }

    pub fn one_step(req: PathRequest, map: &Map) -> Path {
        assert_eq!(req.start.lane(), req.end.lane());
        Path::new(
            map,
            vec![PathStep::Lane(req.start.lane())],
            req,
            Vec::new(),
            Vec::new(),
        )
    }

    /// The original PathRequest used to produce this path. If the path has been modified since
    /// creation, the start and end of the request won't match up with the current path steps.
    pub fn get_req(&self) -> &PathRequest {
        &self.orig_req
    }

    pub fn crossed_so_far(&self) -> Distance {
        self.crossed_so_far
    }

    pub fn total_length(&self) -> Distance {
        self.total_length
    }

    pub fn percent_dist_crossed(&self) -> f64 {
        // Sometimes this happens
        if self.total_length == Distance::ZERO {
            return 1.0;
        }
        self.crossed_so_far / self.total_length
    }

    pub fn is_empty(&self) -> bool {
        self.steps.is_empty()
    }

    pub fn is_last_step(&self) -> bool {
        self.steps.len() == 1
    }

    pub fn isnt_last_step(&self) -> bool {
        self.steps.len() > 1
    }

    pub fn currently_inside_ut(&self) -> &Option<UberTurn> {
        &self.currently_inside_ut
    }
    pub fn about_to_start_ut(&self) -> Option<&UberTurn> {
        if self.steps.len() < 2 || self.uber_turns.is_empty() {
            return None;
        }
        if let PathStep::Turn(t) = self.steps[1] {
            if self.uber_turns[0].path[0] == t {
                return Some(&self.uber_turns[0]);
            }
        }
        None
    }

    pub fn shift(&mut self, map: &Map) -> PathStep {
        let step = self.steps.pop_front().unwrap();
        self.crossed_so_far += self.dist_crossed_from_step(map, &step);

        #[allow(clippy::collapsible_if)] // better readability
        if let Some(ref ut) = self.currently_inside_ut {
            if step == PathStep::Turn(*ut.path.last().unwrap()) {
                self.currently_inside_ut = None;
            }
        } else if !self.steps.is_empty() && !self.uber_turns.is_empty() {
            if self.steps[0] == PathStep::Turn(self.uber_turns[0].path[0]) {
                self.currently_inside_ut = Some(self.uber_turns.pop_front().unwrap());
            }
        }

        if self.steps.len() == 1 {
            // TODO When handle_uber_turns experiment is turned off, this will crash
            assert!(self.uber_turns.is_empty());
            assert!(self.currently_inside_ut.is_none());
        }

        step
    }

    pub fn add(&mut self, step: PathStep, map: &Map) {
        if let Some(PathStep::Lane(l)) = self.steps.back() {
            if *l == self.orig_req.end.lane() {
                self.total_length += map.get_l(*l).length() - self.orig_req.end.dist_along();
            }
        }
        // TODO We assume we'll be going along the full length of this new step
        self.total_length += step.as_traversable().get_polyline(map).length();

        self.steps.push_back(step);
        // TODO Maybe need to amend uber_turns?
    }

    pub fn is_upcoming_uber_turn_component(&self, t: TurnID) -> bool {
        self.uber_turns
            .front()
            .map(|ut| ut.path.contains(&t))
            .unwrap_or(false)
    }

    /// Trusting the caller to do this in valid ways.
    pub fn modify_step(&mut self, idx: usize, step: PathStep, map: &Map) {
        assert!(self.currently_inside_ut.is_none());
        // We're assuming this step was in the middle of the path, meaning we were planning to
        // travel its full length
        self.total_length -= self.steps[idx].as_traversable().get_polyline(map).length();

        // When replacing a turn, also update any references to it in uber_turns
        if let PathStep::Turn(old_turn) = self.steps[idx] {
            for uts in &mut self.uber_turns {
                if let Some(turn_idx) = uts.path.iter().position(|i| i == &old_turn) {
                    if let PathStep::Turn(new_turn) = step {
                        uts.path[turn_idx] = new_turn;
                    } else {
                        panic!("expected turn, but found {:?}", step);
                    }
                }
            }
        }

        self.steps[idx] = step;
        self.total_length += self.steps[idx].as_traversable().get_polyline(map).length();

        if self.total_length < Distance::ZERO {
            panic!(
                "modify_step broke total_length, it's now {}",
                self.total_length
            );
        }
    }

    pub fn current_step(&self) -> PathStep {
        self.steps[0]
    }

    pub fn next_step(&self) -> PathStep {
        self.steps[1]
    }
    pub fn maybe_next_step(&self) -> Option<PathStep> {
        if self.is_last_step() {
            None
        } else {
            Some(self.next_step())
        }
    }

    pub fn last_step(&self) -> PathStep {
        self.steps[self.steps.len() - 1]
    }

    /// Traces along the path from its originally requested start. This is only valid to call for
    /// an umodified path.
    ///
    /// It mostly seems the PolyLine's length will match `total_length`, but callers beware if
    /// you're relying on this -- check walking paths with the buggy sharp angles particularly.
    pub fn trace(&self, map: &Map) -> Option<PolyLine> {
        let t1 = self.steps[0].as_traversable();
        let t2 = Traversable::Lane(self.orig_req.start.lane());
        if t1 != t2 {
            warn!(
                "Can't trace modified path; first step is {}, but requested started from {}",
                t1, t2
            );
            return None;
        }
        self.trace_from_start(map, self.orig_req.start.dist_along())
    }

    /// Traces along the path from a specified distance along the first step until the end.
    pub fn trace_from_start(&self, map: &Map, start_dist: Distance) -> Option<PolyLine> {
        let orig_end_dist = self.orig_req.end.dist_along();

        if self.steps.len() == 1 {
            let dist_ahead = if start_dist < orig_end_dist {
                orig_end_dist - start_dist
            } else {
                start_dist - orig_end_dist
            };

            // Why might this fail? It's possible there are paths on their last step that're
            // effectively empty, because they're a 0-length turn, or something like a pedestrian
            // crossing a front path and immediately getting on a bike.
            return self.steps[0]
                .exact_slice(map, start_dist, Some(dist_ahead))
                .ok();
        }

        let mut pts_so_far: Option<PolyLine> = None;

        // Special case the first step with start_dist.
        if let Ok(pts) = self.steps[0].exact_slice(map, start_dist, None) {
            pts_so_far = Some(pts);
        }

        // Crunch through the intermediate steps, as long as we can.
        for i in 1..self.steps.len() {
            // Restrict the last step's slice
            let dist_ahead = if i == self.steps.len() - 1 {
                Some(match self.steps[i] {
                    PathStep::ContraflowLane(l) => {
                        map.get_l(l).lane_center_pts.reversed().length() - orig_end_dist
                    }
                    _ => orig_end_dist,
                })
            } else {
                None
            };

            let start_dist_this_step = match self.steps[i] {
                // TODO Length of a PolyLine can slightly change when points are reversed! That
                // seems bad.
                PathStep::ContraflowLane(l) => map.get_l(l).lane_center_pts.reversed().length(),
                _ => Distance::ZERO,
            };
            if let Ok(new_pts) = self.steps[i].exact_slice(map, start_dist_this_step, dist_ahead) {
                if pts_so_far.is_some() {
                    match pts_so_far.unwrap().extend(new_pts) {
                        Ok(new) => {
                            pts_so_far = Some(new);
                        }
                        Err(err) => {
                            println!("WARNING: Couldn't trace some path: {}", err);
                            return None;
                        }
                    }
                } else {
                    pts_so_far = Some(new_pts);
                }
            }
        }

        Some(pts_so_far.unwrap())
    }

    pub fn get_steps(&self) -> &VecDeque<PathStep> {
        &self.steps
    }

    /// Estimate how long following the path will take in the best case, assuming no traffic or
    /// delay at intersections. To determine the speed along each step, the agent's optional
    /// max_speed must be known.
    pub fn estimate_duration(&self, map: &Map, max_speed: Option<Speed>) -> Duration {
        let mut total = Duration::ZERO;
        for step in &self.steps {
            let dist = self.dist_crossed_from_step(map, step);
            let speed = step.max_speed_along(max_speed, self.orig_req.constraints, map);
            total += dist / speed;
        }
        total
    }

    /// If the agent following this path will initially block some intermediate lanes as they move
    /// between a driveway and `get_req().start`, then record them here.
    pub fn get_blocked_starts(&self) -> Vec<LaneID> {
        self.blocked_starts.clone()
    }

    /// Returns the total elevation (gain, loss) experienced over the path.
    pub fn get_total_elevation_change(&self, map: &Map) -> (Distance, Distance) {
        let mut gain = Distance::ZERO;
        let mut loss = Distance::ZERO;
        for step in &self.steps {
            let (from, to) = match step {
                PathStep::Lane(l) => {
                    let lane = map.get_l(*l);
                    (
                        map.get_i(lane.src_i).elevation,
                        map.get_i(lane.dst_i).elevation,
                    )
                }
                PathStep::ContraflowLane(l) => {
                    let lane = map.get_l(*l);
                    (
                        map.get_i(lane.dst_i).elevation,
                        map.get_i(lane.src_i).elevation,
                    )
                }
                PathStep::Turn(_) => {
                    continue;
                }
            };
            if from < to {
                gain += to - from;
            } else {
                loss += from - to;
            }
        }
        (gain, loss)
    }

    pub fn get_step_at_dist_along(&self, map: &Map, mut dist_along: Distance) -> Result<PathStep> {
        for step in &self.steps {
            let dist_here = self.dist_crossed_from_step(map, step);
            if dist_along <= dist_here {
                return Ok(*step);
            }
            dist_along -= dist_here;
        }
        bail!(
            "get_step_at_dist_along has leftover distance of {}",
            dist_along
        );
    }
}

#[derive(Debug, PartialEq, Eq, Clone, Serialize, Deserialize)]
pub struct PathRequest {
    pub start: Position,
    pub end: Position,
    pub constraints: PathConstraints,
    // If present, also consider this start position, adding an extra cost to use it. When a Path
    // is returned, 'start' might be switched to use this one instead, reflecting the choice made.
    pub(crate) alt_start: Option<(Position, Duration)>,
}

impl fmt::Display for PathRequest {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "PathRequest({} along {}... to {} along {} for {:?})",
            self.start.dist_along(),
            self.start.lane(),
            self.end.dist_along(),
            self.end.lane(),
            self.constraints,
        )
    }
}

impl PathRequest {
    /// Determines the start and end position to travel between two buildings for a certain mode.
    /// The path won't cover modality transfers -- if somebody has to walk between the building and
    /// a parking spot or bikeable position, that won't be captured here.
    pub fn between_buildings(
        map: &Map,
        from: BuildingID,
        to: BuildingID,
        constraints: PathConstraints,
    ) -> Option<PathRequest> {
        let from = map.get_b(from);
        let to = map.get_b(to);
        let (start, end) = match constraints {
            PathConstraints::Pedestrian => (from.sidewalk_pos, to.sidewalk_pos),
            PathConstraints::Bike => (from.biking_connection(map)?.0, to.biking_connection(map)?.0),
            PathConstraints::Car => (
                from.driving_connection(map)?.0,
                to.driving_connection(map)?.0,
            ),
            // These two aren't useful here. A pedestrian using transit would pass in
            // PathConstraints::Pedestrian. There's no reason yet to find a route for a bus or
            // train to travel between buildings.
            PathConstraints::Bus | PathConstraints::Train => unimplemented!(),
        };
        if constraints == PathConstraints::Car {
            Some(PathRequest::leave_from_driveway(
                start,
                end,
                constraints,
                map,
            ))
        } else {
            Some(PathRequest {
                start,
                end,
                constraints,
                alt_start: None,
            })
        }
    }

    /// The caller must pass in two valid sidewalk positions. This isn't verified.
    pub fn walking(start: Position, end: Position) -> PathRequest {
        PathRequest {
            start,
            end,
            constraints: PathConstraints::Pedestrian,
            alt_start: None,
        }
    }

    /// The caller must pass in two valid positions for the vehicle type. This isn't verified. No
    /// off-side turns from driveways happen; the exact start position is used.
    pub fn vehicle(start: Position, end: Position, constraints: PathConstraints) -> PathRequest {
        PathRequest {
            start,
            end,
            constraints,
            alt_start: None,
        }
    }

    /// The caller must pass in two valid positions for the vehicle type. This isn't verified.
    /// TODO The vehicle may cut exit the driveway onto the off-side of the road.
    pub fn leave_from_driveway(
        start: Position,
        end: Position,
        constraints: PathConstraints,
        map: &Map,
    ) -> PathRequest {
        let alt_start = (|| {
            let start_lane = map.get_l(start.lane());
            let road = map.get_r(start_lane.id.road);
            // If start and end road match, don't exit offside
            // TODO Sometimes this is valid! Just not if we're trying to go behind ourselves
            if road.id == end.lane().road {
                return None;
            }
            let offside_dir = start_lane.dir.opposite();
            let alt_lane = road.find_closest_lane(start_lane.id, |l| {
                l.dir == offside_dir && constraints.can_use(l, map)
            })?;
            // TODO Do we need buffer_dist like driving_connection does?
            let pos = start.equiv_pos(alt_lane, map);
            let number_lanes_between =
                ((start_lane.id.offset as f64) - (alt_lane.offset as f64)).abs();
            // TODO Tune the cost of cutting across lanes
            let cost = Duration::seconds(10.0) * number_lanes_between;
            Some((pos, cost))
        })();
        PathRequest {
            start,
            end,
            constraints,
            alt_start,
        }
    }
}

fn validate_continuity(map: &Map, steps: &[PathStep]) {
    if steps.is_empty() {
        panic!("Empty path");
    }
    for pair in steps.windows(2) {
        let from = match pair[0] {
            PathStep::Lane(id) => map.get_l(id).last_pt(),
            PathStep::ContraflowLane(id) => map.get_l(id).first_pt(),
            PathStep::Turn(id) => map.get_t(id).geom.last_pt(),
        };
        let to = match pair[1] {
            PathStep::Lane(id) => map.get_l(id).first_pt(),
            PathStep::ContraflowLane(id) => map.get_l(id).last_pt(),
            PathStep::Turn(id) => map.get_t(id).geom.first_pt(),
        };
        let len = from.dist_to(to);
        if len > EPSILON_DIST {
            println!("All steps in invalid path:");
            for s in steps {
                match s {
                    PathStep::Lane(l) => println!(
                        "  {:?} from {} to {}",
                        s,
                        map.get_l(*l).src_i,
                        map.get_l(*l).dst_i
                    ),
                    PathStep::ContraflowLane(l) => println!(
                        "  {:?} from {} to {}",
                        s,
                        map.get_l(*l).dst_i,
                        map.get_l(*l).src_i
                    ),
                    PathStep::Turn(_) => println!("  {:?}", s),
                }
            }
            panic!(
                "pathfind() returned path that warps {} from {:?} to {:?}",
                len, pair[0], pair[1]
            );
        }
    }
}

fn validate_restrictions(map: &Map, steps: &[PathStep]) {
    for triple in steps.windows(5) {
        if let (PathStep::Lane(l1), PathStep::Lane(l2), PathStep::Lane(l3)) =
            (triple[0], triple[2], triple[4])
        {
            let from = map.get_parent(l1);
            let via = l2.road;
            let to = l3.road;

            for (dont_via, dont_to) in &from.complicated_turn_restrictions {
                if via == *dont_via && to == *dont_to {
                    panic!(
                        "Some path does illegal uber-turn: {} -> {} -> {}",
                        l1, l2, l3
                    );
                }
            }
        }
    }
}

fn validate_zones(map: &Map, steps: &[PathStep], req: &PathRequest) {
    let z1 = map.get_parent(req.start.lane()).get_zone(map);
    let z2 = map.get_parent(req.end.lane()).get_zone(map);

    for step in steps {
        if let PathStep::Turn(t) = step {
            if map
                .get_parent(t.src)
                .access_restrictions
                .allow_through_traffic
                .contains(req.constraints)
                && !map
                    .get_parent(t.dst)
                    .access_restrictions
                    .allow_through_traffic
                    .contains(req.constraints)
            {
                // Entering our destination zone is fine
                let into_zone = map.get_parent(t.dst).get_zone(map);
                if into_zone != z1 && into_zone != z2 {
                    // TODO There are lots of false positive here that occur when part of the graph
                    // is separated from the rest by access-restricted roads. Could maybe detect
                    // that here, or ideally even extend the zone at map construction time (or edit
                    // time) when that happens.
                    panic!("{} causes illegal entrance into a zone at {}", req, t);
                }
            }
        }
    }
}