1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_hashmap, serialize_hashmap, FixedMap, IndexableKey};
use geom::{Distance, Duration, PolyLine, Time};
use map_model::{DrivingSide, IntersectionID, LaneID, Map, Path, PathStep, Position, Traversable};

use crate::mechanics::car::{Car, CarState};
use crate::mechanics::queue::{Queue, QueueEntry, Queued};
use crate::sim::Ctx;
use crate::{
    ActionAtEnd, AgentID, AgentProperties, CarID, CarStatus, Command, CreateCar, DelayCause,
    DistanceInterval, DrawCarInput, Event, IntersectionSimState, ParkedCar, ParkingSim,
    ParkingSpot, PersonID, Problem, SimOptions, TimeInterval, TransitSimState, TripID, TripManager,
    UnzoomedAgent, Vehicle, VehicleType, WalkingSimState, FOLLOWING_DISTANCE, MAX_CAR_LENGTH,
};

const TIME_TO_WAIT_AT_BUS_STOP: Duration = Duration::const_seconds(10.0);
const TIME_TO_CHANGE_LANES: Duration = Duration::const_seconds(1.0);

// TODO Do something else.
pub const BLIND_RETRY_TO_CREEP_FORWARDS: Duration = Duration::const_seconds(0.1);
pub const BLIND_RETRY_TO_REACH_END_DIST: Duration = Duration::const_seconds(5.0);

/// Simulates vehicles!
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct DrivingSimState {
    // This spends some space to save time. If a simulation contains 1 million cars over the course
    // of a day, but only 100,000 are ever active simultaneously, we store 900,000 `None`s. But we
    // gain much faster lookup, which has shown dramatic speedups in the scenarios being run so
    // far.
    cars: FixedMap<CarID, Car>,
    // Note this uses a HashMap for faster lookup. Although the order of iterating over the HashMap
    // is random, determinism in the simulation is preserved, because nothing iterates over
    // everything.
    #[serde(
        serialize_with = "serialize_hashmap",
        deserialize_with = "deserialize_hashmap"
    )]
    queues: HashMap<Traversable, Queue>,
    events: Vec<Event>,

    waiting_to_spawn: BTreeMap<CarID, (Position, Option<PersonID>)>,

    recalc_lanechanging: bool,
    handle_uber_turns: bool,

    time_to_unpark_onstreet: Duration,
    time_to_park_onstreet: Duration,
    time_to_unpark_offstreet: Duration,
    time_to_park_offstreet: Duration,
}

// Mutations
impl DrivingSimState {
    pub fn new(map: &Map, opts: &SimOptions) -> DrivingSimState {
        let mut sim = DrivingSimState {
            cars: FixedMap::new(),
            queues: HashMap::new(),
            events: Vec::new(),
            recalc_lanechanging: !opts.dont_recalc_lanechanging,
            handle_uber_turns: !opts.dont_handle_uber_turns,
            waiting_to_spawn: BTreeMap::new(),

            time_to_unpark_onstreet: Duration::seconds(10.0),
            time_to_park_onstreet: Duration::seconds(15.0),
            time_to_unpark_offstreet: Duration::seconds(5.0),
            time_to_park_offstreet: Duration::seconds(5.0),
        };
        if opts.infinite_parking {
            sim.time_to_unpark_offstreet = Duration::seconds(0.1);
            sim.time_to_park_offstreet = Duration::seconds(0.1);
        }

        for l in map.all_lanes() {
            if l.lane_type.is_for_moving_vehicles() {
                let q = Queue::new(Traversable::Lane(l.id), map);
                sim.queues.insert(q.id, q);
            }
        }
        for t in map.all_turns() {
            if !t.between_sidewalks() {
                let q = Queue::new(Traversable::Turn(t.id), map);
                sim.queues.insert(q.id, q);
            }
        }

        sim
    }

    /// None if it worked, otherwise returns the CreateCar unmodified for possible retry.
    pub fn start_car_on_lane(
        &mut self,
        now: Time,
        mut params: CreateCar,
        ctx: &mut Ctx,
    ) -> Option<CreateCar> {
        let first_lane = params.router.head().as_lane();
        let mut start_dist = params.router.get_path().get_req().start.dist_along();
        if let Some(ref p) = params.maybe_parked_car {
            // If we're exiting a driveway, make the front of the vehicle wind up in the correct
            // spot after the driveway. We could attempt to do this when we create the PathRequest,
            // but it's complicated to adjust the position correctly, and this is the only place
            // that needs to know.
            if !matches!(p.spot, ParkingSpot::Onstreet(_, _)) {
                start_dist += params.vehicle.length;
                // TODO Should we also adjust the request?
                if start_dist > ctx.map.get_l(first_lane).length() {
                    error!(
                        "At {}, {} needs to exit a driveway at {} on {}, but they overflow",
                        now, params.vehicle.id, start_dist, first_lane
                    );
                    // Ideally we'd snap driveways to a point such that all equivalent positions
                    // don't overflow, but until then, just have an unrealistic exit!
                    start_dist -= params.vehicle.length;
                }
            }
        }

        // First handle any of the intermediate queues, failing fast. Record the position of the
        // blockage's front and the index in that queue.
        let mut blocked_starts: Vec<(Position, usize)> = Vec::new();
        for lane in params.router.get_path().get_blocked_starts() {
            // This buffer makes sure other vehicles can enter the queue behind a blockage very
            // close to the start of the lane and not spillover.
            let pos = match params
                .router
                .get_path()
                .get_req()
                .start
                .equiv_pos(lane, ctx.map)
                .buffer_dist(MAX_CAR_LENGTH + FOLLOWING_DISTANCE, ctx.map)
            {
                Some(pos) => pos,
                None => {
                    // TODO Loss of some simulation realism. We could also ban this upfront in
                    // leave_from_driveway by requiring a minimum lane length on all intermediate
                    // lanes...
                    // Also this is super spammy
                    if false {
                        warn!("Not inserting a static blockage on {} at {} for {} to spawn, because the lane is too short", lane, now, params.vehicle.id);
                    }
                    continue;
                }
            };
            if !self.queues.contains_key(&Traversable::Lane(lane)) {
                // TODO This is probably a center turn lane, or maybe some kind of exotic center
                // parking. Just skip over it, until we properly model them.
                continue;
            }
            if let Some(idx) = self.queues[&Traversable::Lane(lane)].can_block_from_driveway(
                // This is before adjusting for the length of the vehicle exiting the driveway
                &pos,
                params.vehicle.length,
                now,
                &self.cars,
                &self.queues,
            ) {
                blocked_starts.push((pos, idx));
            } else {
                return Some(params);
            }
            // TODO What's the purpose of nobody_headed_towards again? Do we need to enforce it for
            // intermediate lanes too?
        }

        if !ctx
            .intersections
            .nobody_headed_towards(first_lane, ctx.map.get_l(first_lane).src_i)
        {
            return Some(params);
        }
        if let Some(idx) = self.queues[&Traversable::Lane(first_lane)].get_idx_to_insert_car(
            start_dist,
            params.vehicle.length,
            now,
            &self.cars,
            &self.queues,
        ) {
            let mut car = Car {
                vehicle: params.vehicle,
                router: params.router,
                // Temporary
                state: CarState::Queued {
                    blocked_since: now,
                    want_to_change_lanes: None,
                },
                last_steps: VecDeque::new(),
                started_at: now,
                total_blocked_time: Duration::ZERO,
                trip_and_person: params.trip_and_person,
                wants_to_overtake: BTreeSet::new(),
            };
            if let Some(p) = params.maybe_parked_car {
                let delay = match p.spot {
                    ParkingSpot::Onstreet(_, _) => self.time_to_unpark_onstreet,
                    ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                        // Even in infinite parking mode, we want to block intermediate lanes for a
                        // few seconds.
                        //
                        // TODO Actually, revisit ~instantaneous unparking in infinite mode. Were
                        // we making gridlock progress somewhere because of this?
                        if blocked_starts.is_empty() {
                            self.time_to_unpark_offstreet
                        } else {
                            Duration::seconds(5.0)
                        }
                    }
                };
                let mut lanes = Vec::new();
                for (pos, idx) in blocked_starts {
                    self.queues
                        .get_mut(&Traversable::Lane(pos.lane()))
                        .unwrap()
                        .add_static_blockage(
                            car.vehicle.id,
                            pos.dist_along(),
                            pos.dist_along() - car.vehicle.length,
                            idx,
                        );
                    lanes.push(pos.lane());
                }

                car.state = CarState::Unparking {
                    front: start_dist,
                    spot: p.spot,
                    time_int: TimeInterval::new(now, now + delay),
                    blocked_starts: lanes,
                };
            } else {
                // Have to do this early
                if car.router.last_step() {
                    match car.router.maybe_handle_end(
                        start_dist,
                        &car.vehicle,
                        ctx.parking,
                        ctx.map,
                        car.trip_and_person,
                        &mut self.events,
                    ) {
                        None | Some(ActionAtEnd::GotoLaneEnd) => {}
                        x => {
                            panic!(
                                "Car with one-step route {:?} had unexpected result from \
                                 maybe_handle_end: {:?}",
                                car.router, x
                            );
                        }
                    }
                    // We might've decided to go park somewhere farther, so get_end_dist no longer
                    // makes sense.
                    if car.router.last_step() && start_dist > car.router.get_end_dist() {
                        println!(
                            "WARNING: {} wants to spawn at {}, which is past their end of {} on a \
                             one-step path {}",
                            car.vehicle.id,
                            start_dist,
                            car.router.get_end_dist(),
                            first_lane
                        );
                        params.router = car.router;
                        params.vehicle = car.vehicle;
                        return Some(params);
                    }
                }

                car.state = car.crossing_state(start_dist, now, ctx.map);
            }
            ctx.scheduler
                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
            self.queues
                .get_mut(&Traversable::Lane(first_lane))
                .unwrap()
                .insert_car_at_idx(idx, &car);
            self.waiting_to_spawn.remove(&car.vehicle.id);
            self.cars.insert(car.vehicle.id, car);
            return None;
        }
        Some(params)
    }

    /// If start_car_on_lane fails and a retry is scheduled, this is an idempotent way to mark the
    /// vehicle as active, but waiting to spawn.
    pub fn vehicle_waiting_to_spawn(&mut self, id: CarID, pos: Position, person: Option<PersonID>) {
        self.waiting_to_spawn.insert(id, (pos, person));
    }

    /// State transitions for this car:
    ///
    /// Crossing -> Queued or WaitingToAdvance
    /// Unparking -> Crossing
    /// IdlingAtStop -> Crossing
    /// Queued -> last step handling (Parking or done)
    /// WaitingToAdvance -> try to advance to the next step of the path
    /// Parking -> done
    ///
    /// State transitions for other cars:
    ///
    /// Crossing -> Crossing (recalculate dist/time)
    /// Queued -> Crossing
    ///
    /// Why is it safe to process cars in any order, rather than making sure to follow the order
    /// of queues? Because of the invariant that distances should never suddenly jump when a car
    /// has entered/exiting a queue.
    /// This car might have reached the router's end distance, but maybe not -- might
    /// actually be stuck behind other cars. We have to calculate the distances right now to
    /// be sure.
    pub fn update_car(
        &mut self,
        id: CarID,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) {
        let mut need_distances = {
            let car = &self.cars[&id];
            match car.state {
                CarState::Queued { .. } => car.router.last_step(),
                CarState::Parking(_, _, _) => true,
                CarState::IdlingAtStop(_, _) => true,
                _ => false,
            }
        };

        if !need_distances {
            // We need to mutate two different cars in one case. To avoid fighting the borrow
            // checker, temporarily move one of them out of the map.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car to manage scheduling stuff!
            need_distances = self.update_car_without_distances(&mut car, now, ctx, transit);
            self.cars.insert(id, car);
        }
        // Note we might set need_distances to true, so both of these conditionals might run.
        if need_distances {
            // Do this before removing the car!
            let dists = self.queues[&self.cars[&id].router.head()].get_car_positions(
                now,
                &self.cars,
                &self.queues,
            );
            let idx = dists
                .iter()
                .position(|entry| entry.member == Queued::Vehicle(id))
                .unwrap();

            // We need to mutate two different cars in some cases. To avoid fighting the borrow
            // checker, temporarily move one of them out of the map.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car_with_distances to manage scheduling stuff!
            if self
                .update_car_with_distances(&mut car, &dists, idx, now, ctx, trips, transit, walking)
            {
                self.cars.insert(id, car);
            } else {
                self.delete_car_internal(&mut car, dists, idx, now, ctx);
            }
        }
    }

    // If this returns true, we need to immediately run update_car_with_distances. If we don't,
    // then the car will briefly be Queued and might immediately become something else, which
    // affects how leaders update followers.
    fn update_car_without_distances(
        &mut self,
        car: &mut Car,
        now: Time,
        ctx: &mut Ctx,
        transit: &mut TransitSimState,
    ) -> bool {
        match car.state {
            CarState::Crossing { .. } => {
                car.state = CarState::Queued {
                    blocked_since: now,
                    want_to_change_lanes: None,
                };
                if car.router.last_step() {
                    // Immediately run update_car_with_distances.
                    return true;
                }
                let queue = &self.queues[&car.router.head()];
                if queue.is_car_at_front(car.vehicle.id) {
                    // Want to re-run, but no urgency about it happening immediately.
                    car.state = CarState::WaitingToAdvance { blocked_since: now };
                    if self.recalc_lanechanging {
                        car.router.opportunistically_lanechange(
                            &self.queues,
                            ctx.map,
                            self.handle_uber_turns,
                        );
                    }
                    ctx.scheduler.push(now, Command::UpdateCar(car.vehicle.id));
                } else if let Some(slow_leader) = self.wants_to_overtake(car) {
                    // TODO This entire check kicks in a little late; we only enter Queued after
                    // spending the freeflow time possibly moving very slowly.
                    let first_conflict = car.wants_to_overtake.insert(slow_leader);

                    // Record when a vehicle wants to pass a bike
                    if first_conflict
                        && slow_leader.vehicle_type == VehicleType::Bike
                        && car.vehicle.vehicle_type != VehicleType::Bike
                    {
                        self.events.push(Event::ProblemEncountered(
                            self.cars[&slow_leader].trip_and_person.unwrap().0,
                            Problem::OvertakeDesired(queue.id),
                        ));
                    }

                    if let Some(target_lane) = self.pick_overtaking_lane(car, ctx.map) {
                        // We need the current position of the car to see if lane-changing is
                        // actually feasible right now, so record our intention and trigger
                        // update_car_with_distances.
                        car.state = CarState::Queued {
                            blocked_since: now,
                            want_to_change_lanes: Some(target_lane),
                        };
                        return true;
                    }
                }
            }
            CarState::Unparking {
                front,
                ref blocked_starts,
                ..
            } => {
                for lane in blocked_starts {
                    // Calculate the exact positions along this blocked queue (which is ***NOT***
                    // the same queue that the unparking car is in!). Use that to update the
                    // follower.
                    //
                    // It SHOULD be fine that the current car isn't currently in self.cars; the
                    // static blockage doesn't need it. But calculating positions on one queue may
                    // recurse to the queue where the current car is. So temporarily make the car
                    // visible in this query.
                    self.cars.insert(car.vehicle.id, car.clone());

                    let dists = self.queues[&Traversable::Lane(*lane)].get_car_positions(
                        now,
                        &self.cars,
                        &self.queues,
                    );

                    // Undo the above hack.
                    self.cars.remove(&car.vehicle.id);

                    let idx = dists.iter().position(|entry| matches!(entry.member, Queued::StaticBlockage { cause, ..} if cause == car.vehicle.id)).unwrap();
                    self.update_follower(idx, &dists, now, ctx);

                    self.queues
                        .get_mut(&Traversable::Lane(*lane))
                        .unwrap()
                        .clear_static_blockage(car.vehicle.id, idx);
                }

                if car.router.last_step() {
                    // Actually, we need to do this first. Ignore the answer -- if we're doing
                    // something weird like vanishing or re-parking immediately (quite unlikely),
                    // the next loop will pick that up. Just trigger the side effect of choosing an
                    // end_dist.
                    car.router.maybe_handle_end(
                        front,
                        &car.vehicle,
                        ctx.parking,
                        ctx.map,
                        car.trip_and_person,
                        &mut self.events,
                    );
                }
                car.state = car.crossing_state(front, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
            }
            CarState::WaitingToAdvance { blocked_since } => {
                // 'car' is the leader.
                let from = car.router.head();
                let goto = car.router.next();
                assert!(from != goto);

                if let Traversable::Turn(t) = goto {
                    if !ctx.intersections.maybe_start_turn(
                        AgentID::Car(car.vehicle.id),
                        t,
                        PathStep::Turn(t).max_speed_along(
                            car.vehicle.max_speed,
                            car.vehicle.vehicle_type.to_constraints(),
                            ctx.map,
                        ),
                        now,
                        ctx.map,
                        ctx.scheduler,
                        Some((car, &self.cars, &mut self.queues)),
                    ) {
                        // Don't schedule a retry here.
                        return false;
                    }
                    if let Some((trip, _)) = car.trip_and_person {
                        self.events.push(Event::IntersectionDelayMeasured(
                            trip,
                            t,
                            AgentID::Car(car.vehicle.id),
                            now - blocked_since,
                        ));
                    }
                }

                {
                    let queue = self.queues.get_mut(&from).unwrap();
                    assert_eq!(queue.move_first_car_to_laggy_head(), car.vehicle.id);
                }

                // We do NOT need to update the follower. If they were Queued, they'll remain that
                // way, until laggy_head is None.

                let last_step = car.router.advance(
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                );
                car.total_blocked_time += now - blocked_since;
                car.state = car.crossing_state(Distance::ZERO, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                self.events.push(Event::AgentEntersTraversable(
                    AgentID::Car(car.vehicle.id),
                    car.trip_and_person.map(|(t, _)| t),
                    goto,
                    if car.vehicle.vehicle_type.is_transit() {
                        Some(transit.get_passengers(car.vehicle.id).len())
                    } else {
                        None
                    },
                ));

                // Don't mark turn_finished until our back is out of the turn.
                car.last_steps.push_front(last_step);

                // Optimistically assume we'll be out of the way ASAP.
                // This is update, not push, because we might've scheduled a blind retry too late,
                // and the car actually crosses an entire new traversable in the meantime.
                ctx.scheduler.update(
                    car.crossing_state_with_end_dist(
                        DistanceInterval::new_driving(
                            Distance::ZERO,
                            car.vehicle.length + FOLLOWING_DISTANCE,
                        ),
                        now,
                        ctx.map,
                    )
                    .get_end_time(),
                    Command::UpdateLaggyHead(car.vehicle.id),
                );

                self.queues
                    .get_mut(&goto)
                    .unwrap()
                    .push_car_onto_end(car.vehicle.id);
            }
            CarState::ChangingLanes {
                from,
                new_time,
                new_dist,
                ..
            } => {
                // The car is already in the target queue. Just set them in the crossing state; we
                // already calculated the intervals for it.
                car.state = CarState::Crossing {
                    time_int: new_time,
                    dist_int: new_dist,
                    steep_uphill: false,
                };
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));

                // And remove the blockage from the old queue. Similar to the note in this function
                // for Unparking, we calculate distances in that OTHER queue.
                let dists = self.queues[&Traversable::Lane(from)].get_car_positions(
                    now,
                    &self.cars,
                    &self.queues,
                );
                let idx = dists.iter().position(|entry| matches!(entry.member, Queued::DynamicBlockage { cause, ..} if cause == car.vehicle.id)).unwrap();
                self.update_follower(idx, &dists, now, ctx);

                self.queues
                    .get_mut(&Traversable::Lane(from))
                    .unwrap()
                    .clear_dynamic_blockage(car.vehicle.id, idx);
            }
            CarState::Queued { .. } => unreachable!(),
            CarState::Parking(_, _, _) => unreachable!(),
            CarState::IdlingAtStop(_, _) => unreachable!(),
        }
        false
    }

    // Returns true if the car survives.
    fn update_car_with_distances(
        &mut self,
        car: &mut Car,
        dists: &[QueueEntry],
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) -> bool {
        let our_dist = dists[idx].front;

        match car.state {
            CarState::Crossing { .. }
            | CarState::Unparking { .. }
            | CarState::WaitingToAdvance { .. }
            | CarState::ChangingLanes { .. } => unreachable!(),
            CarState::Queued {
                blocked_since,
                want_to_change_lanes,
            } => {
                // Two totally different reasons we'll wind up here: we want to lane-change, and
                // we're on our last step.
                if let Some(target_lane) = want_to_change_lanes {
                    self.try_start_lc(car, our_dist, idx, target_lane, now, ctx);
                    return true;
                }

                match car.router.maybe_handle_end(
                    our_dist,
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                ) {
                    Some(ActionAtEnd::VanishAtBorder(i)) => {
                        car.total_blocked_time += now - blocked_since;
                        // Don't do this for buses
                        if car.trip_and_person.is_some() {
                            trips.car_or_bike_reached_border(
                                now,
                                car.vehicle.id,
                                i,
                                car.total_blocked_time,
                                car.router.get_path().total_length(),
                                ctx,
                            );
                        }
                        false
                    }
                    Some(ActionAtEnd::GiveUpOnParking) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.cancel_trip(
                            now,
                            car.trip_and_person.unwrap().0,
                            "no available parking anywhere".to_string(),
                            // If we couldn't find parking normally, doesn't make sense to warp the
                            // car to the destination. There's no parking!
                            None,
                            ctx,
                        );
                        false
                    }
                    Some(ActionAtEnd::StartParking(spot)) => {
                        car.total_blocked_time += now - blocked_since;
                        let delay = match spot {
                            ParkingSpot::Onstreet(_, _) => self.time_to_park_onstreet,
                            ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                                self.time_to_park_offstreet
                            }
                        };
                        car.state =
                            CarState::Parking(our_dist, spot, TimeInterval::new(now, now + delay));
                        // If we don't do this, then we might have another car creep up behind, see
                        // the spot free, and start parking too. This can happen with multiple
                        // lanes and certain vehicle lengths.
                        ctx.parking.reserve_spot(spot, car.vehicle.id);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        true
                    }
                    Some(ActionAtEnd::GotoLaneEnd) => {
                        car.total_blocked_time += now - blocked_since;
                        car.state = car.crossing_state(our_dist, now, ctx.map);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        true
                    }
                    Some(ActionAtEnd::StopBiking(bike_rack)) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.bike_reached_end(
                            now,
                            car.vehicle.id,
                            bike_rack,
                            car.total_blocked_time,
                            car.router.get_path().total_length(),
                            ctx,
                        );
                        false
                    }
                    Some(ActionAtEnd::BusAtStop) => {
                        car.total_blocked_time += now - blocked_since;
                        if transit.bus_arrived_at_stop(now, car.vehicle.id, trips, walking, ctx) {
                            car.state = CarState::IdlingAtStop(
                                our_dist,
                                TimeInterval::new(now, now + TIME_TO_WAIT_AT_BUS_STOP),
                            );
                            ctx.scheduler
                                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                            true
                        } else {
                            // Vanishing at a border
                            false
                        }
                    }
                    None => {
                        ctx.scheduler.push(
                            now + BLIND_RETRY_TO_REACH_END_DIST,
                            Command::UpdateCar(car.vehicle.id),
                        );

                        // TODO For now, always use BLIND_RETRY_TO_REACH_END_DIST. Measured things
                        // to be slower otherwise. :(
                        /*
                        // If this car wasn't blocked at all, when would it reach its goal?
                        let ideal_end_time = match car.crossing_state(our_dist, now, map) {
                            CarState::Crossing { time_int, .. } => time_int.end,
                            _ => unreachable!(),
                        };
                        if ideal_end_time == now {
                            // Haha, no such luck. We're super super close to the goal, but not
                            // quite there yet.
                            scheduler.push(now + BLIND_RETRY_TO_REACH_END_DIST, Command::UpdateCar(car.vehicle.id));
                        } else {
                            scheduler.push(ideal_end_time, Command::UpdateCar(car.vehicle.id));
                        }
                        // TODO For cars stuck on their last step, this will spam a fair bit. But
                        // that should be pretty rare.
                        */

                        true
                    }
                }
            }
            CarState::Parking(_, spot, _) => {
                ctx.parking.add_parked_car(ParkedCar {
                    vehicle: car.vehicle.clone(),
                    spot,
                    parked_since: now,
                });
                trips.car_reached_parking_spot(
                    now,
                    car.vehicle.id,
                    spot,
                    car.total_blocked_time,
                    car.router.get_path().total_length(),
                    ctx,
                );
                false
            }
            CarState::IdlingAtStop(dist, _) => {
                car.router = transit.bus_departed_from_stop(car.vehicle.id, ctx.map);
                self.events
                    .push(Event::PathAmended(car.router.get_path().clone()));
                car.state = car.crossing_state(dist, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));

                self.update_follower(idx, dists, now, ctx);

                true
            }
        }
    }

    /// Abruptly remove a vehicle from the simulation. They may be in any arbitrary state, like in
    /// the middle of a turn or parking.
    pub fn delete_car(&mut self, c: CarID, now: Time, ctx: &mut Ctx) -> Vehicle {
        self.waiting_to_spawn.remove(&c);

        let dists = self.queues[&self.cars[&c].router.head()].get_car_positions(
            now,
            &self.cars,
            &self.queues,
        );
        let idx = dists
            .iter()
            .position(|entry| entry.member == Queued::Vehicle(c))
            .unwrap();
        let mut car = self.cars.remove(&c).unwrap();

        // Hacks to delete cars that're mid-turn
        if let Traversable::Turn(t) = car.router.head() {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            // delete_car_internal will call free_reserved_space, so this is necessary to balance
            // that.
            queue.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
            ctx.intersections.agent_deleted_mid_turn(AgentID::Car(c), t);

            // Free any reserved space on the next step.
            let queue = self.queues.get_mut(&car.router.next()).unwrap();
            queue.free_reserved_space(&car);
        }
        if let Some(Traversable::Turn(t)) = car.router.maybe_next() {
            ctx.intersections.cancel_request(AgentID::Car(c), t);
        }

        if car.router.last_step() {
            ctx.parking.unreserve_spot(c);
        }

        self.delete_car_internal(&mut car, dists, idx, now, ctx);
        // delete_car_internal cancels UpdateLaggyHead
        ctx.scheduler.cancel(Command::UpdateCar(c));
        car.vehicle
    }

    fn delete_car_internal(
        &mut self,
        car: &mut Car,
        dists: Vec<QueueEntry>,
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
    ) {
        {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            queue.remove_car_from_idx(car.vehicle.id, idx);
            // trim_last_steps doesn't actually include the current queue!
            queue.free_reserved_space(car);
            let i = match queue.id {
                Traversable::Lane(l) => ctx.map.get_l(l).src_i,
                Traversable::Turn(t) => t.parent,
            };
            if ctx.handling_live_edits.is_none() {
                ctx.intersections
                    .space_freed(now, i, ctx.scheduler, ctx.map);
            }
        }

        ctx.intersections.vehicle_gone(car.vehicle.id);

        // We might be vanishing while partly clipping into other stuff.
        self.trim_last_steps(car, now, car.last_steps.len(), ctx);

        // We might've scheduled one of those using BLIND_RETRY_TO_CREEP_FORWARDS.
        ctx.scheduler
            .cancel(Command::UpdateLaggyHead(car.vehicle.id));

        self.update_follower(idx, &dists, now, ctx);
    }

    /// After a leader (maybe an active vehicle, maybe a static blockage) gets out of the way,
    /// update the follower so that they don't suddenly jump forwards.
    fn update_follower(
        &mut self,
        idx_leader: usize,
        dists: &[QueueEntry],
        now: Time,
        ctx: &mut Ctx,
    ) {
        if idx_leader == dists.len() - 1 {
            return;
        }
        let idx_follower = idx_leader + 1;

        if let Queued::Vehicle(follower_id) = dists[idx_follower].member {
            let follower_dist = dists[idx_follower].front;

            // If we're going to delete the follower soon, don't bother waking them up.
            if let Some(ref deleting_agents) = ctx.handling_live_edits {
                if deleting_agents.contains(&AgentID::Car(follower_id)) {
                    return;
                }
            }

            let mut follower = self.cars.get_mut(&follower_id).unwrap();
            // TODO If the leader vanished at a border node, this still jumps a bit -- the lead
            // car's back is still sticking out. Need to still be bound by them, even though they
            // don't exist! If the leader just parked, then we're fine.
            match follower.state {
                CarState::Queued { blocked_since, .. } => {
                    // TODO If they're on their last step, they might be ending early and not right
                    // behind us? !follower.router.last_step()

                    // Prevent them from jumping forwards.
                    follower.total_blocked_time += now - blocked_since;
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                }
                CarState::Crossing { .. } => {
                    // If the follower was still Crossing, they might not've been blocked by the
                    // leader yet. But recalculating their Crossing state isn't necessarily a no-op
                    // -- this could prevent them from suddenly warping past a blockage.
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                }
                CarState::ChangingLanes {
                    from, to, lc_time, ..
                } => {
                    // This is a fun case -- something stopped blocking somebody that was in the
                    // process of lane-changing! Similar to the Crossing case above, we just have
                    // to update the distance/time intervals, but otherwise leave them in the
                    // middle of their lane-changing. It's guaranteed that lc_time will continue to
                    // finish before the new time interval, because there's no possible way
                    // recalculating this crossing state here will speed things up from the
                    // original estimate.
                    let (new_time, new_dist) = match follower.crossing_state_with_end_dist(
                        DistanceInterval::new_driving(follower_dist, ctx.map.get_l(to).length()),
                        now,
                        ctx.map,
                    ) {
                        CarState::Crossing {
                            time_int, dist_int, ..
                        } => (time_int, dist_int),
                        _ => unreachable!(),
                    };
                    assert!(new_time.end >= lc_time.end);
                    follower.state = CarState::ChangingLanes {
                        from,
                        to,
                        new_time,
                        new_dist,
                        lc_time,
                    };
                }
                // They weren't blocked
                CarState::Unparking { .. }
                | CarState::Parking(_, _, _)
                | CarState::IdlingAtStop(_, _) => {}
                CarState::WaitingToAdvance { .. } => unreachable!(),
            }
        }
    }

    pub fn update_laggy_head(&mut self, id: CarID, now: Time, ctx: &mut Ctx) {
        let currently_on = self.cars[&id].router.head();
        // This car must be the tail.
        let dist_along_last = {
            let (last_id, dist) = self.queues[&currently_on]
                .get_last_car_position(now, &self.cars, &self.queues)
                .unwrap();
            if id != last_id {
                panic!(
                    "At {} on {:?}, laggy head {} isn't the last on the lane; it's {}",
                    now, currently_on, id, last_id
                );
            }
            dist
        };

        // Trim off as many of the oldest last_steps as we've made distance.
        let mut dist_left_to_cleanup = self.cars[&id].vehicle.length + FOLLOWING_DISTANCE;
        dist_left_to_cleanup -= dist_along_last;
        let mut num_to_trim = None;
        for (idx, step) in self.cars[&id].last_steps.iter().enumerate() {
            if dist_left_to_cleanup <= Distance::ZERO {
                num_to_trim = Some(self.cars[&id].last_steps.len() - idx);
                break;
            }
            dist_left_to_cleanup -= step.get_polyline(ctx.map).length();
        }

        if let Some(n) = num_to_trim {
            let mut car = self.cars.remove(&id).unwrap();
            self.trim_last_steps(&mut car, now, n, ctx);
            self.cars.insert(id, car);
        }

        if !self.cars[&id].last_steps.is_empty() {
            // Might have to retry again later.
            let retry_at = self.cars[&id]
                .crossing_state_with_end_dist(
                    // Update again when we've completely cleared all last_steps. We could be more
                    // precise and do it sooner when we clear the last step, but a little delay is
                    // fine for correctness.
                    DistanceInterval::new_driving(
                        dist_along_last,
                        self.cars[&id].vehicle.length + FOLLOWING_DISTANCE,
                    ),
                    now,
                    ctx.map,
                )
                .get_end_time();
            // Sometimes due to rounding, retry_at will be exactly time, but we really need to
            // wait a bit longer.
            // TODO Smarter retry based on states and stuckness?
            if retry_at > now {
                ctx.scheduler.push(retry_at, Command::UpdateLaggyHead(id));
            } else {
                // If we look up car positions before this retry happens, weird things can
                // happen -- the laggy head could be well clear of the old queue by then. Make
                // sure to handle that there. Consequences of this retry being long? A follower
                // will wait a bit before advancing.
                ctx.scheduler.push(
                    now + BLIND_RETRY_TO_CREEP_FORWARDS,
                    Command::UpdateLaggyHead(id),
                );
            }
        }
    }

    // Caller has to figure out how many steps to trim!
    fn trim_last_steps(&mut self, car: &mut Car, now: Time, n: usize, ctx: &mut Ctx) {
        for i in 0..n {
            let on = car.last_steps.pop_back().unwrap();
            let old_queue = self.queues.get_mut(&on).unwrap();
            assert_eq!(old_queue.laggy_head, Some(car.vehicle.id));
            old_queue.laggy_head = None;
            match on {
                Traversable::Turn(t) => {
                    ctx.intersections.turn_finished(
                        now,
                        AgentID::Car(car.vehicle.id),
                        t,
                        ctx.scheduler,
                        ctx.map,
                        ctx.handling_live_edits.is_some(),
                    );
                }
                Traversable::Lane(l) => {
                    old_queue.free_reserved_space(car);
                    if ctx.handling_live_edits.is_none() {
                        ctx.intersections.space_freed(
                            now,
                            ctx.map.get_l(l).src_i,
                            ctx.scheduler,
                            ctx.map,
                        );
                    }
                }
            }

            if i == 0 {
                // Wake up the follower
                if let Some(follower_id) = old_queue.get_active_cars().get(0) {
                    // TODO Stop using get_active_cars for this! Be paranoid.
                    if old_queue.is_car_at_front(*follower_id) {
                        let mut follower = self.cars.get_mut(follower_id).unwrap();

                        match follower.state {
                            CarState::Queued { blocked_since, .. } => {
                                // If they're on their last step, they might be ending early and not
                                // right behind us.
                                if !follower.router.last_step() {
                                    // The follower has been smoothly following while the laggy head
                                    // gets out of the way. So immediately promote them to
                                    // WaitingToAdvance.
                                    follower.state = CarState::WaitingToAdvance { blocked_since };
                                    if self.recalc_lanechanging && ctx.handling_live_edits.is_none()
                                    {
                                        follower.router.opportunistically_lanechange(
                                            &self.queues,
                                            ctx.map,
                                            self.handle_uber_turns,
                                        );
                                    }
                                    ctx.scheduler
                                        .push(now, Command::UpdateCar(follower.vehicle.id));
                                }
                            }
                            CarState::WaitingToAdvance { .. } => unreachable!(),
                            // They weren't blocked. Note that there's no way the Crossing state could
                            // jump forwards here; the leader vanished from the end of the traversable.
                            CarState::Crossing { .. }
                            | CarState::ChangingLanes { .. }
                            | CarState::Unparking { .. }
                            | CarState::Parking(_, _, _)
                            | CarState::IdlingAtStop(_, _) => {}
                        }
                    }
                }
            } else {
                // Only the last step we cleared could possibly have cars. Any intermediates, this
                // car was previously completely blocking them.
                assert!(old_queue.get_active_cars().is_empty());
            }
        }
    }

    /// If the car wants to over-take somebody, what adjacent lane should they use?
    /// - The lane must be in the same direction as the current; no support for crossing the road's
    ///   yellow line yet.
    /// - Prefer passing on the left (for DrivingSide::Right)
    /// For now, just pick one candidate lane, even if both might be usable.
    fn pick_overtaking_lane(&self, car: &Car, map: &Map) -> Option<LaneID> {
        // Don't overtake in the middle of a turn!
        let current_lane = map.get_l(car.router.head().maybe_lane()?);
        let road = map.get_parent(current_lane.id);
        let idx = current_lane.id.offset;

        let mut candidates = Vec::new();
        if idx != 0 {
            candidates.push(road.lanes[idx - 1].id);
        }
        if idx != road.lanes.len() - 1 {
            candidates.push(road.lanes[idx + 1].id);
        }
        if map.get_config().driving_side == DrivingSide::Left {
            candidates.reverse();
        }

        for l in candidates {
            let target_lane = map.get_l(l);
            // Must be the same direction -- no crossing into oncoming traffic yet
            if current_lane.dir != target_lane.dir {
                continue;
            }
            // The lane types can differ, as long as the vehicle can use the target. Imagine
            // overtaking a slower cyclist in a bike lane using the rest of the road.
            if !car
                .vehicle
                .vehicle_type
                .to_constraints()
                .can_use(target_lane, map)
            {
                continue;
            }
            // Is this other lane compatible with the path? We won't make any attempts to return to the
            // original lane after changing.
            if !car
                .router
                .can_lanechange(current_lane.id, target_lane.id, map)
            {
                continue;
            }
            return Some(target_lane.id);
        }

        None
    }

    fn try_start_lc(
        &mut self,
        car: &mut Car,
        front_current_queue: Distance,
        idx_in_current_queue: usize,
        target_lane: LaneID,
        now: Time,
        ctx: &mut Ctx,
    ) {
        // If we are a laggy head somewhere else (our back is still sticking into another lane or
        // turn), don't start lane-changing!
        if !car.last_steps.is_empty() {
            return;
        }
        // If the lanes are very different lengths and we're too close to the end at the target,
        // not going to work.
        if front_current_queue >= ctx.map.get_l(target_lane).length() {
            return;
        }
        let current_lane = car.router.head().as_lane();
        let front_target_queue = Position::new(current_lane, front_current_queue)
            .equiv_pos(target_lane, ctx.map)
            .dist_along();

        // Calculate the crossing state in the target queue. Pass in the DistanceInterval
        // explicitly, because we haven't modified the route yet.
        let (new_time, new_dist) = match car.crossing_state_with_end_dist(
            DistanceInterval::new_driving(front_target_queue, ctx.map.get_l(target_lane).length()),
            now,
            ctx.map,
        ) {
            CarState::Crossing {
                time_int, dist_int, ..
            } => (time_int, dist_int),
            _ => unreachable!(),
        };

        // Do we have enough time to finish the lane-change, assuming that we go as fast as
        // possible in the target?
        let lc_time = TimeInterval::new(now, now + TIME_TO_CHANGE_LANES);
        if lc_time.end >= new_time.end {
            return;
        }

        // Is there room for us to sliiiide on over into that lane's DMs?
        if let Some(idx_in_target_queue) = self.queues[&Traversable::Lane(target_lane)]
            .get_idx_to_insert_car(
                front_target_queue,
                car.vehicle.length,
                now,
                &self.cars,
                &self.queues,
            )
        {
            // TODO Can downgrade this to an alert or debug once active work has settled down
            if false {
                info!(
                    "{} is starting to change lanes from {} to {}",
                    car.vehicle.id,
                    car.router.head(),
                    target_lane
                );
            }

            // Exit the old queue (leaving a dynamic blockage in place)
            self.queues
                .get_mut(&car.router.head())
                .unwrap()
                .replace_car_with_dynamic_blockage(car, idx_in_current_queue);

            // Change the path
            car.router.confirm_lanechange(target_lane, ctx.map);

            // Insert into the new queue
            self.queues
                .get_mut(&car.router.head())
                .unwrap()
                .insert_car_at_idx(idx_in_target_queue, car);

            // Put into the new state
            car.state = CarState::ChangingLanes {
                from: current_lane,
                to: target_lane,
                new_time,
                new_dist,
                lc_time,
            };
            ctx.scheduler
                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
        }
    }

    pub fn collect_events(&mut self) -> Vec<Event> {
        std::mem::take(&mut self.events)
    }

    pub fn handle_live_edits(&mut self, map: &Map) {
        // Calculate all queues that should exist now.
        let mut new_queues = HashSet::new();
        for l in map.all_lanes() {
            if l.lane_type.is_for_moving_vehicles() {
                new_queues.insert(Traversable::Lane(l.id));
            }
        }
        for t in map.all_turns() {
            if !t.between_sidewalks() {
                new_queues.insert(Traversable::Turn(t.id));
            }
        }

        // Delete any old queues.
        self.queues.retain(|k, v| {
            if new_queues.remove(k) {
                // No changes
                true
            } else {
                // Make sure it's empty!
                if v.laggy_head.is_some() || !v.get_active_cars().is_empty() {
                    panic!(
                        "After live map edits, deleted queue {} still has vehicles! {:?}, {:?}",
                        k,
                        v.laggy_head,
                        v.get_active_cars()
                    );
                }
                false
            }
        });

        // Create any new queues
        for key in new_queues {
            self.queues.insert(key, Queue::new(key, map));
        }
    }
}

// Queries
impl DrivingSimState {
    /// Note the ordering of results is non-deterministic!
    pub fn get_unzoomed_agents(&self, now: Time, map: &Map) -> Vec<UnzoomedAgent> {
        let mut result = Vec::new();

        for queue in self.queues.values() {
            if queue.get_active_cars().is_empty() {
                continue;
            }

            for entry in queue.get_car_positions(now, &self.cars, &self.queues) {
                if let Queued::Vehicle(c) = entry.member {
                    let car = &self.cars[&c];
                    result.push(UnzoomedAgent {
                        id: AgentID::Car(car.vehicle.id),
                        pos: match queue.id.get_polyline(map).dist_along(entry.front) {
                            Ok((pt, _)) => pt,
                            Err(err) => panic!(
                                "At {}, invalid dist_along of {} for queue {}: {}",
                                now, entry.front, queue.id, err
                            ),
                        },
                        person: car.trip_and_person.map(|(_, p)| p),
                        parking: car.is_parking(),
                    });
                }
            }
        }

        for (id, (pos, person)) in &self.waiting_to_spawn {
            result.push(UnzoomedAgent {
                id: AgentID::Car(*id),
                pos: pos.pt(map),
                person: *person,
                parking: false,
            });
        }

        result
    }

    pub fn does_car_exist(&self, id: CarID) -> bool {
        // Because of the shortcut IndexableKey takes with ignoring the VehicleType part of the ID,
        // we have to double-check that it matches!
        match self.cars.get(&id) {
            Some(car) => car.vehicle.id == id,
            None => false,
        }
    }

    /// Note the ordering of results is non-deterministic!
    pub fn get_all_draw_cars(
        &self,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        let mut result = Vec::new();
        for queue in self.queues.values() {
            result.extend(
                queue
                    .get_car_positions(now, &self.cars, &self.queues)
                    .into_iter()
                    .filter_map(|entry| {
                        if let Queued::Vehicle(id) = entry.member {
                            Some(self.cars[&id].get_draw_car(entry.front, now, map, transit))
                        } else {
                            None
                        }
                    }),
            );
        }
        result
    }

    /// This is about as expensive as get_draw_cars_on.
    pub fn get_single_draw_car(
        &self,
        id: CarID,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Option<DrawCarInput> {
        let car = self.cars.get(&id)?;
        self.get_draw_cars_on(now, car.router.head(), map, transit)
            .into_iter()
            .find(|d| d.id == id)
    }

    pub fn get_draw_cars_on(
        &self,
        now: Time,
        on: Traversable,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        match self.queues.get(&on) {
            Some(q) => q
                .get_car_positions(now, &self.cars, &self.queues)
                .into_iter()
                .filter_map(|entry| match entry.member {
                    Queued::Vehicle(id) => {
                        Some(self.cars[&id].get_draw_car(entry.front, now, map, transit))
                    }
                    // Manually enable to debug exiting driveways and lane-changing
                    Queued::StaticBlockage { cause, front, back } => {
                        if false {
                            Some(DrawCarInput {
                                id: cause,
                                waiting_for_turn: None,
                                status: CarStatus::Parked,
                                intent: None,
                                on,
                                partly_on: Vec::new(),
                                label: Some("block".to_string()),
                                person: None,
                                body: on.get_polyline(map).exact_slice(back, front),
                            })
                        } else {
                            None
                        }
                    }
                    Queued::DynamicBlockage { cause, vehicle_len } => {
                        if false {
                            Some(DrawCarInput {
                                id: cause,
                                waiting_for_turn: None,
                                status: CarStatus::Parked,
                                intent: None,
                                on,
                                partly_on: Vec::new(),
                                label: Some("block".to_string()),
                                person: None,
                                body: on
                                    .get_polyline(map)
                                    .exact_slice(entry.front - vehicle_len, entry.front),
                            })
                        } else {
                            None
                        }
                    }
                })
                .collect(),
            None => Vec::new(),
        }
    }

    pub fn debug_car_json(&self, id: CarID) -> String {
        if let Some(ref car) = self.cars.get(&id) {
            abstutil::to_json(car)
        } else {
            format!("{} is parked somewhere", id)
        }
    }

    pub fn debug_car_ui(&self, id: CarID) -> String {
        if let Some(car) = self.cars.get(&id) {
            format!("{:?}", car.state)
        } else {
            format!("{} isn't in DrivingSimState", id)
        }
    }

    pub fn debug_lane(&self, id: LaneID) {
        if let Some(ref queue) = self.queues.get(&Traversable::Lane(id)) {
            println!("{}", abstutil::to_json(queue));
        }
    }

    pub fn agent_properties(&self, id: CarID, now: Time) -> AgentProperties {
        if let Some(car) = self.cars.get(&id) {
            let path = car.router.get_path();
            let time_spent_waiting = car.state.time_spent_waiting(now);

            // In all cases, we can figure out exactly where we are along the current queue, then
            // assume we've travelled from the start of that, unless it's the very first step.
            let front = self.get_car_front(now, car);
            let current_state_dist =
                if car.router.head() == Traversable::Lane(path.get_req().start.lane()) {
                    front - path.get_req().start.dist_along()
                } else {
                    front
                };

            AgentProperties {
                total_time: now - car.started_at,
                waiting_here: time_spent_waiting,
                total_waiting: car.total_blocked_time + time_spent_waiting,
                dist_crossed: path.crossed_so_far() + current_state_dist,
                total_dist: path.total_length(),
            }
        } else {
            for car in self.waiting_to_spawn.keys() {
                if id == *car {
                    // If the vehicle is waiting to spawn, we don't have any stats on them yet.  We
                    // could track when they originally tried to spawn and use for a few of these
                    // fields, but we should also make sure that delay gets recorded later.
                    return AgentProperties {
                        total_time: Duration::ZERO,
                        waiting_here: Duration::ZERO,
                        total_waiting: Duration::ZERO,
                        dist_crossed: Distance::ZERO,
                        total_dist: Distance::ZERO,
                    };
                }
            }
            panic!(
                "Can't get agent_properties of {} at {}; they don't exist",
                id, now
            );
        }
    }

    pub fn get_path(&self, id: CarID) -> Option<&Path> {
        let car = self.cars.get(&id)?;
        Some(car.router.get_path())
    }
    pub fn get_all_driving_paths(&self) -> Vec<&Path> {
        self.cars
            .values()
            .map(|car| car.router.get_path())
            .collect()
    }

    pub fn trace_route(&self, now: Time, id: CarID, map: &Map) -> Option<PolyLine> {
        let car = self.cars.get(&id)?;
        let front = self.get_car_front(now, car);
        car.router.get_path().trace_from_start(map, front)
    }

    pub fn percent_along_route(&self, id: CarID) -> f64 {
        self.cars[&id].router.get_path().percent_dist_crossed()
    }

    pub fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        let car = self.cars.get(&id)?;
        car.vehicle.owner
    }

    pub fn target_lane_penalty(&self, l: LaneID) -> (usize, usize) {
        self.queues[&Traversable::Lane(l)].target_lane_penalty()
    }

    pub fn find_trips_to_edited_parking(
        &self,
        spots: BTreeSet<ParkingSpot>,
    ) -> Vec<(AgentID, TripID)> {
        let mut affected = Vec::new();
        for car in self.cars.values() {
            if let Some(spot) = car.router.get_parking_spot_goal() {
                if !spots.contains(spot) {
                    // Buses don't park
                    affected.push((AgentID::Car(car.vehicle.id), car.trip_and_person.unwrap().0));
                }
            }
        }
        affected
    }

    /// Finds vehicles that're laggy heads on affected parts of the map.
    pub fn find_vehicles_affected_by_live_edits(
        &self,
        closed_intersections: &HashSet<IntersectionID>,
        edited_lanes: &BTreeSet<LaneID>,
    ) -> Vec<(AgentID, TripID)> {
        let mut affected = Vec::new();
        for car in self.cars.values() {
            if car.last_steps.iter().any(|step| match step {
                Traversable::Lane(l) => edited_lanes.contains(l),
                Traversable::Turn(t) => {
                    closed_intersections.contains(&t.parent)
                        || edited_lanes.contains(&t.src)
                        || edited_lanes.contains(&t.dst)
                }
            }) {
                // TODO Buses aren't handled yet! Mostly not a big deal, because they're pretty
                // much never created anyway.
                if let Some((trip, _)) = car.trip_and_person {
                    affected.push((AgentID::Car(car.vehicle.id), trip));
                }
            }
        }
        affected
    }

    pub fn all_waiting_people(&self, now: Time, delays: &mut BTreeMap<PersonID, Duration>) {
        for c in self.cars.values() {
            if let Some((_, person)) = c.trip_and_person {
                let delay = c.state.time_spent_waiting(now);
                if delay > Duration::ZERO {
                    delays.insert(person, delay);
                }
            }
        }
    }

    pub fn debug_queue_lengths(&self, l: LaneID) -> Option<(Distance, Distance)> {
        let queue = self.queues.get(&Traversable::Lane(l))?;
        Some((queue.reserved_length, queue.geom_len))
    }

    pub fn get_blocked_by_graph(
        &self,
        now: Time,
        map: &Map,
        intersections: &IntersectionSimState,
    ) -> BTreeMap<AgentID, (Duration, DelayCause)> {
        let mut graph = BTreeMap::new();

        // Just look for every case where somebody is behind someone else, whether or not they're
        // blocked by them and waiting.
        for queue in self.queues.values() {
            if let Some(head) = queue.laggy_head {
                if let Some(next) = queue.get_active_cars().get(0) {
                    graph.insert(
                        AgentID::Car(*next),
                        (
                            self.cars[&head].state.time_spent_waiting(now),
                            DelayCause::Agent(AgentID::Car(head)),
                        ),
                    );
                }
            }
            // This doesn't need to account for blockages. Somebody unparking won't start doing it
            // until they're guaranteed to be able to finish it.
            let cars = queue.get_active_cars();
            for (head, tail) in cars.iter().zip(cars.iter().skip(1)) {
                graph.insert(
                    AgentID::Car(*tail),
                    (
                        self.cars[tail].state.time_spent_waiting(now),
                        DelayCause::Agent(AgentID::Car(*head)),
                    ),
                );
            }
        }

        intersections.populate_blocked_by(now, &mut graph, map, &self.cars, &self.queues);
        graph
    }

    fn get_car_front(&self, now: Time, car: &Car) -> Distance {
        self.queues[&car.router.head()]
            .get_car_positions(now, &self.cars, &self.queues)
            .into_iter()
            .find(|entry| entry.member == Queued::Vehicle(car.vehicle.id))
            .unwrap()
            .front
    }

    /// Does the given car want to over-take the vehicle in front of it?
    fn wants_to_overtake(&self, car: &Car) -> Option<CarID> {
        let queue = &self.queues[&car.router.head()];
        let leader = &self.cars[&queue.get_leader(car.vehicle.id)?];

        // Are we faster than them?
        // TODO This shouldn't be a blocking check; we also want to pass parking cars and buses
        // waiting at stops.
        let their_speed = leader.vehicle.max_speed?;
        if car
            .vehicle
            .max_speed
            .map(|s| s <= their_speed)
            .unwrap_or(false)
        {
            return None;
        }

        // Are they moving slowly or also stuck behind someone?
        match leader.state {
            // TODO Maybe we want to pass someone queued, if they're too slow to pass their own
            // leader?
            CarState::WaitingToAdvance { .. } | CarState::Queued { .. } => {
                return None;
            }
            // In all other cases, we may want to pass them.
            _ => {}
        }

        // TODO Check if there's room in front of them to pass. Handle passing two bikes?
        // TODO Check remaining distance before next intersection
        // TODO Check relative speed difference, and time to pass them
        // TODO Eventually, check if there's room to do the maneuever (lane-changing to
        // the left only, or popping into an oncoming lane!

        Some(leader.vehicle.id)
    }
}

// This implementation relies on the fact that car IDs are unique just by their number. Vehicle
// type is also in there, but during lookup, it'll be ignored!
impl IndexableKey for CarID {
    fn index(&self) -> usize {
        self.id
    }
}