1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use crate::{Angle, Bounds, Distance, HashablePt2D, PolyLine, Pt2D, Ring};
use geo::algorithm::area::Area;
use geo::algorithm::convexhull::ConvexHull;
use geo_booleanop::boolean::BooleanOp;
use serde::{Deserialize, Serialize};
use std::convert::TryFrom;
use std::fmt;

#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Polygon {
    points: Vec<Pt2D>,
    // Groups of three indices make up the triangles
    indices: Vec<u16>,

    // If the polygon has holes, explicitly store all the rings (the one outer and all of the
    // inner) so they can later be used to generate outlines and such. If the polygon has no holes,
    // then this will just be None, since the points form a ring.
    rings: Option<Vec<Ring>>,
}

impl Polygon {
    // TODO Last result when we've got something that isn't a valid Ring, but want to draw it
    // anyway. Fix the root cause of those cases instead.
    pub fn buggy_new(orig_pts: Vec<Pt2D>) -> Polygon {
        assert!(orig_pts.len() >= 3);

        let mut vertices = Vec::new();
        for pt in &orig_pts {
            vertices.push(pt.x());
            vertices.push(pt.y());
        }
        let indices = downsize(earcutr::earcut(&vertices, &Vec::new(), 2));

        Polygon {
            points: orig_pts.clone(),
            indices,
            rings: None,
        }
    }

    pub fn with_holes(outer: Ring, mut inner: Vec<Ring>) -> Polygon {
        inner.insert(0, outer);
        let geojson_style: Vec<Vec<Vec<f64>>> = inner
            .iter()
            .map(|ring| {
                ring.points()
                    .into_iter()
                    .map(|pt| vec![pt.x(), pt.y()])
                    .collect()
            })
            .collect();
        let (vertices, holes, dims) = earcutr::flatten(&geojson_style);
        let indices = downsize(earcutr::earcut(&vertices, &holes, dims));

        Polygon {
            points: vertices
                .chunks(2)
                .map(|pair| Pt2D::new(pair[0], pair[1]))
                .collect(),
            indices,
            rings: if inner.len() == 1 { None } else { Some(inner) },
        }
    }

    // TODO Doesn't remember rings yet
    pub fn from_geojson(raw: &Vec<Vec<Vec<f64>>>) -> Polygon {
        let (vertices, holes, dims) = earcutr::flatten(raw);
        let indices = downsize(earcutr::earcut(&vertices, &holes, dims));
        Polygon {
            points: vertices
                .chunks(2)
                .map(|pair| Pt2D::new(pair[0], pair[1]))
                .collect(),
            indices,
            rings: None,
        }
    }

    // TODO No guarantee points forms a ring. In fact, the main caller is PolyLine, and it's NOT
    // true there yet.
    pub fn precomputed(points: Vec<Pt2D>, indices: Vec<usize>) -> Polygon {
        assert!(indices.len() % 3 == 0);
        Polygon {
            points,
            indices: downsize(indices),
            rings: None,
        }
    }

    pub fn from_triangle(tri: &Triangle) -> Polygon {
        Polygon {
            points: vec![tri.pt1, tri.pt2, tri.pt3, tri.pt1],
            indices: vec![0, 1, 2],
            rings: None,
        }
    }

    pub fn triangles(&self) -> Vec<Triangle> {
        let mut triangles: Vec<Triangle> = Vec::new();
        for slice in self.indices.chunks_exact(3) {
            triangles.push(Triangle::new(
                self.points[slice[0] as usize],
                self.points[slice[1] as usize],
                self.points[slice[2] as usize],
            ));
        }
        triangles
    }

    pub fn raw_for_rendering(&self) -> (&Vec<Pt2D>, &Vec<u16>) {
        (&self.points, &self.indices)
    }

    pub fn contains_pt(&self, pt: Pt2D) -> bool {
        self.triangles().into_iter().any(|tri| tri.contains_pt(pt))
    }

    pub fn get_bounds(&self) -> Bounds {
        Bounds::from(&self.points)
    }

    fn transform<F: Fn(&Pt2D) -> Pt2D>(&self, f: F) -> Polygon {
        Polygon {
            points: self.points.iter().map(&f).collect(),
            indices: self.indices.clone(),
            rings: self.rings.as_ref().map(|rings| {
                rings
                    .iter()
                    // When scaling, rings may collapse entirely; just give up on preserving in
                    // that case.
                    .filter_map(|ring| Ring::new(ring.points().iter().map(&f).collect()).ok())
                    .collect()
            }),
        }
    }

    pub fn translate(&self, dx: f64, dy: f64) -> Polygon {
        self.transform(|pt| pt.offset(dx, dy))
    }

    pub fn scale(&self, factor: f64) -> Polygon {
        self.transform(|pt| Pt2D::new(pt.x() * factor, pt.y() * factor))
    }

    pub fn rotate(&self, angle: Angle) -> Polygon {
        self.rotate_around(angle, self.center())
    }

    pub fn rotate_around(&self, angle: Angle, pivot: Pt2D) -> Polygon {
        self.transform(|pt| {
            let origin_pt = Pt2D::new(pt.x() - pivot.x(), pt.y() - pivot.y());
            let (sin, cos) = angle.normalized_radians().sin_cos();
            Pt2D::new(
                pivot.x() + origin_pt.x() * cos - origin_pt.y() * sin,
                pivot.y() + origin_pt.y() * cos + origin_pt.x() * sin,
            )
        })
    }

    // The order of these points depends on the constructor! The first and last point may or may
    // not match. Polygons constructed from PolyLines will have a very weird order.
    // TODO rename outer_points to be clear
    pub fn points(&self) -> &Vec<Pt2D> {
        if let Some(ref rings) = self.rings {
            rings[0].points()
        } else {
            &self.points
        }
    }
    pub fn into_points(mut self) -> Vec<Pt2D> {
        if let Some(mut rings) = self.rings.take() {
            rings.remove(0).into_points()
        } else {
            self.points
        }
    }
    pub fn into_ring(self) -> Ring {
        Ring::must_new(self.into_points())
    }

    pub fn center(&self) -> Pt2D {
        // TODO dedupe just out of fear of the first/last point being repeated
        let mut pts: Vec<HashablePt2D> = self.points.iter().map(|pt| pt.to_hashable()).collect();
        pts.sort();
        pts.dedup();
        Pt2D::center(&pts.iter().map(|pt| pt.to_pt2d()).collect())
    }

    // Top-left at the origin. Doesn't take Distance, because this is usually pixels, actually.
    pub fn rectangle(width: f64, height: f64) -> Polygon {
        Polygon {
            points: vec![
                Pt2D::new(0.0, 0.0),
                Pt2D::new(width, 0.0),
                Pt2D::new(width, height),
                Pt2D::new(0.0, height),
                Pt2D::new(0.0, 0.0),
            ],
            indices: vec![0, 1, 2, 0, 2, 3],
            rings: None,
        }
    }

    pub fn rectangle_centered(center: Pt2D, width: Distance, height: Distance) -> Polygon {
        Polygon::rectangle(width.inner_meters(), height.inner_meters()).translate(
            center.x() - width.inner_meters() / 2.0,
            center.y() - height.inner_meters() / 2.0,
        )
    }

    pub fn rectangle_two_corners(pt1: Pt2D, pt2: Pt2D) -> Option<Polygon> {
        if Pt2D::new(pt1.x(), 0.0) == Pt2D::new(pt2.x(), 0.0)
            || Pt2D::new(0.0, pt1.y()) == Pt2D::new(0.0, pt2.y())
        {
            return None;
        }

        let (x1, width) = if pt1.x() < pt2.x() {
            (pt1.x(), pt2.x() - pt1.x())
        } else {
            (pt2.x(), pt1.x() - pt2.x())
        };
        let (y1, height) = if pt1.y() < pt2.y() {
            (pt1.y(), pt2.y() - pt1.y())
        } else {
            (pt2.y(), pt1.y() - pt2.y())
        };
        Some(Polygon::rectangle(width, height).translate(x1, y1))
    }

    // Top-left at the origin. Doesn't take Distance, because this is usually pixels, actually.
    // If radius is None, be as round as possible
    pub fn rounded_rectangle(w: f64, h: f64, r: Option<f64>) -> Polygon {
        let r = r.unwrap_or_else(|| w.min(h) / 2.0);
        assert!(2.0 * r <= w);
        assert!(2.0 * r <= h);

        let mut pts = vec![];

        const RESOLUTION: usize = 5;
        let mut arc = |center: Pt2D, angle1_degs: f64, angle2_degs: f64| {
            for i in 0..=RESOLUTION {
                let angle = Angle::new_degs(
                    angle1_degs + (angle2_degs - angle1_degs) * ((i as f64) / (RESOLUTION as f64)),
                );
                pts.push(center.project_away(Distance::meters(r), angle.invert_y()));
            }
        };

        // Top-left corner
        arc(Pt2D::new(r, r), 180.0, 90.0);
        // Top-right
        arc(Pt2D::new(w - r, r), 90.0, 0.0);
        // Bottom-right
        arc(Pt2D::new(w - r, h - r), 360.0, 270.0);
        // Bottom-left
        arc(Pt2D::new(r, h - r), 270.0, 180.0);
        // Close it off
        pts.push(Pt2D::new(0.0, r));

        // If the radius was maximized, then some of the edges will be zero length.
        pts.dedup();

        Ring::must_new(pts).to_polygon()
    }

    // TODO Result won't be a nice Ring
    pub fn union(self, other: Polygon) -> Polygon {
        let mut points = self.points;
        let mut indices = self.indices;
        let offset = points.len() as u16;
        points.extend(other.points);
        for idx in other.indices {
            indices.push(offset + idx);
        }
        Polygon {
            points,
            indices,
            rings: None,
        }
    }

    pub fn union_all(mut list: Vec<Polygon>) -> Polygon {
        let mut result = list.pop().unwrap();
        for p in list {
            result = result.union(p);
        }
        result
    }

    // TODO Result won't be a nice Ring
    pub fn intersection(&self, other: &Polygon) -> Vec<Polygon> {
        from_multi(to_geo(self.points()).intersection(&to_geo(other.points())))
    }

    pub fn convex_hull(list: Vec<Polygon>) -> Polygon {
        let mp: geo::MultiPolygon<f64> = list.into_iter().map(|p| to_geo(p.points())).collect();
        from_geo(mp.convex_hull())
    }

    pub fn polylabel(&self) -> Pt2D {
        let pt = polylabel::polylabel(&to_geo(&self.points()), &1.0).unwrap();
        Pt2D::new(pt.x(), pt.y())
    }

    // Only works for polygons that're formed from rings. Those made from PolyLines won't work, for
    // example.
    pub fn to_outline(&self, thickness: Distance) -> Result<Polygon, String> {
        if let Some(ref rings) = self.rings {
            Ok(Polygon::union_all(
                rings.iter().map(|r| r.to_outline(thickness)).collect(),
            ))
        } else {
            Ring::new(self.points.clone()).map(|r| r.to_outline(thickness))
        }
    }

    // Remove the internal rings used for to_outline. This is fine to do if the polygon is being
    // added to some larger piece of geometry that won't need an outline.
    pub fn strip_rings(&self) -> Polygon {
        let mut p = self.clone();
        p.rings = None;
        p
    }

    // Usually m^2, unless the polygon is in screen-space
    pub fn area(&self) -> f64 {
        // Polygon orientation messes this up sometimes
        to_geo(&self.points()).area().abs()
    }

    // Doesn't handle multiple crossings in and out.
    pub fn clip_polyline(&self, input: &PolyLine) -> Option<Vec<Pt2D>> {
        let ring = Ring::must_new(self.points.clone());
        let hits = ring.all_intersections(input);

        if hits.len() == 0 {
            // All the points must be inside, or none
            if self.contains_pt(input.first_pt()) {
                Some(input.points().clone())
            } else {
                None
            }
        } else if hits.len() == 1 {
            // Which end?
            if self.contains_pt(input.first_pt()) {
                input
                    .get_slice_ending_at(hits[0])
                    .map(|pl| pl.into_points())
            } else {
                input
                    .get_slice_starting_at(hits[0])
                    .map(|pl| pl.into_points())
            }
        } else if hits.len() == 2 {
            Some(input.trim_to_endpts(hits[0], hits[1]).into_points())
        } else {
            // TODO Not handled
            None
        }
    }

    // TODO Only handles a few cases
    pub fn clip_ring(&self, input: &Ring) -> Option<Vec<Pt2D>> {
        let ring = Ring::must_new(self.points.clone());
        let hits = ring.all_intersections(&PolyLine::unchecked_new(input.clone().into_points()));

        if hits.len() == 0 {
            // If the first point is inside, then all must be
            if self.contains_pt(input.points()[0]) {
                return Some(input.points().clone());
            }
        } else if hits.len() == 2 {
            let (pl1, pl2) = input.get_both_slices_btwn(hits[0], hits[1])?;

            // One of these should be partly outside the polygon. The endpoints won't be in the
            // polygon itself, but they'll be on the ring.
            if pl1
                .points()
                .iter()
                .all(|pt| self.contains_pt(*pt) || ring.contains_pt(*pt))
            {
                return Some(pl1.into_points());
            }
            if pl2
                .points()
                .iter()
                .all(|pt| self.contains_pt(*pt) || ring.contains_pt(*pt))
            {
                return Some(pl2.into_points());
            }
            // Huh?
        }

        None
    }
}

impl fmt::Display for Polygon {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(
            f,
            "Polygon with {} points and {} indices",
            self.points.len(),
            self.indices.len()
        )?;
        for (idx, pt) in self.points.iter().enumerate() {
            writeln!(f, "  {}: {}", idx, pt)?;
        }
        write!(f, "Indices: [")?;
        for slice in self.indices.chunks_exact(3) {
            write!(f, "({}, {}, {}), ", slice[0], slice[1], slice[2])?;
        }
        writeln!(f, "]")
    }
}

#[derive(Clone, Debug)]
pub struct Triangle {
    pub pt1: Pt2D,
    pub pt2: Pt2D,
    pub pt3: Pt2D,
}

impl Triangle {
    pub(crate) fn new(pt1: Pt2D, pt2: Pt2D, pt3: Pt2D) -> Triangle {
        Triangle { pt1, pt2, pt3 }
    }

    fn contains_pt(&self, pt: Pt2D) -> bool {
        let x1 = self.pt1.x();
        let y1 = self.pt1.y();
        let x2 = self.pt2.x();
        let y2 = self.pt2.y();
        let x3 = self.pt3.x();
        let y3 = self.pt3.y();
        let px = pt.x();
        let py = pt.y();

        // Barycentric coefficients for pt
        // Use epsilon to deal with small denominators
        let epsilon = 0.000_000_1;
        let l0 = ((y2 - y3) * (px - x3) + (x3 - x2) * (py - y3))
            / (((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)) + epsilon);
        let l1 = ((y3 - y1) * (px - x3) + (x1 - x3) * (py - y3))
            / (((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)) + epsilon);
        let l2 = 1.0 - l0 - l1;

        for x in &[l0, l1, l2] {
            if *x >= 1.0 || *x <= 0.0 {
                return false;
            }
        }
        true
    }
}

fn to_geo(pts: &Vec<Pt2D>) -> geo::Polygon<f64> {
    geo::Polygon::new(
        geo::LineString::from(
            pts.iter()
                .map(|pt| geo::Point::new(pt.x(), pt.y()))
                .collect::<Vec<_>>(),
        ),
        Vec::new(),
    )
}

fn from_geo(p: geo::Polygon<f64>) -> Polygon {
    Polygon::buggy_new(
        p.into_inner()
            .0
            .into_points()
            .into_iter()
            .map(|pt| Pt2D::new(pt.x(), pt.y()))
            .collect(),
    )
}

fn from_multi(multi: geo::MultiPolygon<f64>) -> Vec<Polygon> {
    multi.into_iter().map(from_geo).collect()
}

fn downsize(input: Vec<usize>) -> Vec<u16> {
    let mut output = Vec::new();
    for x in input {
        if let Ok(x) = u16::try_from(x) {
            output.push(x);
        } else {
            panic!("{} can't fit in u16, some polygon is too huge", x);
        }
    }
    output
}