1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
use std::cell::RefCell;

use geom::{Angle, ArrowCap, Distance, Line, PolyLine, Polygon, Pt2D, Ring, Time, EPSILON_DIST};
use map_model::{
    ControlTrafficSignal, Direction, DrivingSide, Intersection, IntersectionID, IntersectionType,
    LaneType, Map, Road, RoadWithStopSign, Turn, TurnType, SIDEWALK_THICKNESS,
};
use widgetry::{Color, Drawable, GeomBatch, GfxCtx, Prerender, RewriteColor, Text};

use crate::colors::ColorScheme;
use crate::render::{traffic_signal, DrawOptions, Renderable, OUTLINE_THICKNESS};
use crate::{AppLike, ID};

pub struct DrawIntersection {
    pub id: IntersectionID,
    zorder: isize,

    draw_default: RefCell<Option<Drawable>>,
    pub draw_traffic_signal: RefCell<Option<(Time, Drawable)>>,
}

impl DrawIntersection {
    pub fn new(i: &Intersection, map: &Map) -> DrawIntersection {
        DrawIntersection {
            id: i.id,
            zorder: i.get_zorder(map),
            draw_default: RefCell::new(None),
            draw_traffic_signal: RefCell::new(None),
        }
    }

    pub fn render<P: AsRef<Prerender>>(&self, prerender: &P, app: &dyn AppLike) -> GeomBatch {
        let map = app.map();
        let i = map.get_i(self.id);

        // Order matters... main polygon first, then sidewalk corners.
        let mut default_geom = GeomBatch::new();
        let rank = i.get_rank(map);
        default_geom.push(
            if i.is_footway(map) {
                app.cs().zoomed_road_surface(LaneType::Sidewalk, rank)
            } else if i.is_cycleway(map) {
                app.cs().zoomed_road_surface(LaneType::Biking, rank)
            } else {
                app.cs().zoomed_intersection_surface(rank)
            },
            i.polygon.clone(),
        );
        default_geom.extend(
            app.cs().zoomed_road_surface(LaneType::Sidewalk, rank),
            calculate_corners(i, map),
        );
        if app.cs().experiment {
            default_geom.extend(app.cs().curb(rank), calculate_corner_curbs(i, map));
        }

        for turn in &i.turns {
            if turn.turn_type.pedestrian_crossing() {
                make_crosswalk(&mut default_geom, turn, map, app.cs());
            }
        }

        if i.is_private(map) {
            if let Some(color) = app.cs().private_road {
                default_geom.push(color.alpha(0.5), i.polygon.clone());
            }
        }

        match i.intersection_type {
            IntersectionType::Border => {
                let r = map.get_r(*i.roads.iter().next().unwrap());
                default_geom.extend(
                    app.cs().road_center_line,
                    calculate_border_arrows(i, r, map),
                );
            }
            IntersectionType::StopSign => {
                for ss in map.get_stop_sign(i.id).roads.values() {
                    if ss.must_stop {
                        if let Some((octagon, pole, angle)) =
                            DrawIntersection::stop_sign_geom(ss, map)
                        {
                            let center = octagon.center();
                            default_geom.push(app.cs().stop_sign, octagon);
                            default_geom.push(app.cs().stop_sign_pole, pole);

                            // Trial and error to make the scale and angle work. We could also make
                            // a fixed SVG asset and just rotate it, but we'd still need to
                            // calculate the octagon hitbox for the stop sign editor.
                            default_geom.append(
                                Text::from(widgetry::Line("STOP").small_heading().fg(Color::WHITE))
                                    .render_autocropped(prerender.as_ref())
                                    .scale(0.02)
                                    .centered_on(center)
                                    .rotate(angle.opposite().rotate_degs(-90.0)),
                            );
                        }
                    }
                }
            }
            IntersectionType::Construction => {
                // TODO Centering seems weird
                default_geom.append(
                    GeomBatch::load_svg(prerender, "system/assets/map/under_construction.svg")
                        .scale(0.08)
                        .centered_on(i.polygon.center()),
                );
            }
            IntersectionType::TrafficSignal => {}
        }

        let zorder = i.get_zorder(map);
        if zorder < 0 {
            default_geom = default_geom.color(RewriteColor::ChangeAlpha(0.5));
        }

        default_geom
    }

    // Returns the (octagon, pole, angle of the angle) if there's room to draw it.
    pub fn stop_sign_geom(ss: &RoadWithStopSign, map: &Map) -> Option<(Polygon, Polygon, Angle)> {
        let trim_back = Distance::meters(0.1);
        let edge_lane = map.get_l(ss.lane_closest_to_edge);
        // TODO The dream of trimming f64's was to isolate epsilon checks like this...
        if edge_lane.length() - trim_back <= EPSILON_DIST {
            // TODO warn
            return None;
        }
        let last_line = edge_lane
            .lane_center_pts
            .exact_slice(Distance::ZERO, edge_lane.length() - trim_back)
            .last_line();
        let last_line = if map.get_config().driving_side == DrivingSide::Right {
            last_line.shift_right(edge_lane.width)
        } else {
            last_line.shift_left(edge_lane.width)
        };

        let octagon = make_octagon(last_line.pt2(), Distance::meters(1.0), last_line.angle());
        let pole = Line::must_new(
            last_line
                .pt2()
                .project_away(Distance::meters(1.5), last_line.angle().opposite()),
            // TODO Slightly < 0.9
            last_line
                .pt2()
                .project_away(Distance::meters(0.9), last_line.angle().opposite()),
        )
        .make_polygons(Distance::meters(0.3));
        Some((octagon, pole, last_line.angle()))
    }

    pub fn clear_rendering(&mut self) {
        *self.draw_default.borrow_mut() = None;
    }

    /// Find sections along the intersection polygon that aren't connected to a road. These should
    /// contribute an outline.
    pub fn get_unzoomed_outline(i: &Intersection, map: &Map) -> Vec<PolyLine> {
        if let Some(ring) = i.polygon.get_outer_ring() {
            // Turn each road into the left and right point that should be on the ring, so we can
            // "subtract" them out.
            let road_pairs = i
                .roads
                .iter()
                .map(|r| {
                    let road = map.get_r(*r);
                    let half_width = road.get_half_width();
                    let left = road.center_pts.must_shift_left(half_width);
                    let right = road.center_pts.must_shift_right(half_width);
                    if road.src_i == i.id {
                        (left.first_pt(), right.first_pt())
                    } else {
                        (left.last_pt(), right.last_pt())
                    }
                })
                .collect::<Vec<_>>();

            // Walk along each line segment on the ring. If it's not one of our road pairs, add it
            // as a potential segment.
            ring.into_points()
                .windows(2)
                .filter(|window| {
                    !road_pairs
                        .iter()
                        .any(|road_pair| approx_eq(window, &road_pair))
                })
                .map(|pair| PolyLine::must_new(vec![pair[0], pair[1]]))
                .collect::<Vec<_>>()

            // TODO We could merge adjacent segments, to get nicer corners
        } else {
            vec![]
        }
    }

    fn redraw_default(&self, g: &mut GfxCtx, app: &dyn AppLike) {
        // Lazily calculate, because these are expensive to all do up-front, and most players won't
        // exhaustively see every intersection during a single session
        let mut draw = self.draw_default.borrow_mut();
        if draw.is_none() {
            *draw = Some(g.upload(self.render(g, app)));
        }
        g.redraw(draw.as_ref().unwrap());
    }

    fn draw_traffic_signal(
        &self,
        g: &mut GfxCtx,
        app: &dyn AppLike,
        opts: &DrawOptions,
        signal: &ControlTrafficSignal,
    ) {
        if opts.suppress_traffic_signal_details.contains(&self.id) {
            return;
        }
        let mut maybe_redraw = self.draw_traffic_signal.borrow_mut();
        let recalc = maybe_redraw
            .as_ref()
            .map(|(t, _)| *t != app.sim_time())
            .unwrap_or(true);
        if recalc {
            let (idx, remaining) = app.current_stage_and_remaining_time(self.id);
            let mut batch = GeomBatch::new();
            traffic_signal::draw_signal_stage(
                g.prerender,
                &signal.stages[idx],
                idx,
                self.id,
                Some(remaining),
                &mut batch,
                app,
                app.opts().traffic_signal_style.clone(),
            );
            *maybe_redraw = Some((app.sim_time(), g.prerender.upload(batch)));
        }
        let (_, batch) = maybe_redraw.as_ref().unwrap();
        g.redraw(batch);
    }
}

fn approx_eq(pair1: &[Pt2D], pair2: &(Pt2D, Pt2D)) -> bool {
    let epsilon = Distance::meters(0.1);
    (pair1[0].approx_eq(pair2.0, epsilon) && pair1[1].approx_eq(pair2.1, epsilon))
        || (pair1[0].approx_eq(pair2.1, epsilon) && pair1[1].approx_eq(pair2.0, epsilon))
}

impl Renderable for DrawIntersection {
    fn get_id(&self) -> ID {
        ID::Intersection(self.id)
    }

    fn draw(&self, g: &mut GfxCtx, app: &dyn AppLike, opts: &DrawOptions) {
        self.redraw_default(g, app);
        if let Some(signal) = app.map().maybe_get_traffic_signal(self.id) {
            self.draw_traffic_signal(g, app, opts, signal);
        }
    }

    fn get_outline(&self, map: &Map) -> Polygon {
        let poly = &map.get_i(self.id).polygon;
        poly.to_outline(OUTLINE_THICKNESS)
            .unwrap_or_else(|_| poly.clone())
    }

    fn contains_pt(&self, pt: Pt2D, map: &Map) -> bool {
        map.get_i(self.id).polygon.contains_pt(pt)
    }

    fn get_zorder(&self) -> isize {
        self.zorder
    }
}

// TODO Temporarily public for debugging.
pub fn calculate_corners(i: &Intersection, map: &Map) -> Vec<Polygon> {
    if i.is_footway(map) {
        return Vec::new();
    }

    let mut corners = Vec::new();

    for turn in &i.turns {
        if turn.turn_type == TurnType::SharedSidewalkCorner {
            let l1 = map.get_l(turn.id.src);
            let l2 = map.get_l(turn.id.dst);

            // Special case for dead-ends: just thicken the geometry.
            if i.roads.len() == 1 {
                corners.push(turn.geom.make_polygons(l1.width.min(l2.width)));
                continue;
            }

            // Is point2 counter-clockwise of point1?
            let dir = if i
                .polygon
                .center()
                .angle_to(turn.geom.first_pt())
                .simple_shortest_rotation_towards(i.polygon.center().angle_to(turn.geom.last_pt()))
                > 0.0
            {
                1.0
            } else {
                -1.0
            };

            if l1.width == l2.width {
                // When two sidewalks or two shoulders meet, use the turn geometry to create some
                // nice rounding.
                let shift = dir * l1.width / 2.0;
                if let Some(poly) = (|| {
                    let mut pts = turn.geom.shift_either_direction(-shift).ok()?.into_points();
                    pts.push(l2.end_line(i.id).shift_either_direction(shift).pt2());
                    pts.push(l2.end_line(i.id).shift_either_direction(-shift).pt2());
                    pts.extend(
                        turn.geom
                            .shift_either_direction(shift)
                            .ok()?
                            .reversed()
                            .into_points(),
                    );
                    pts.push(l1.end_line(i.id).shift_either_direction(shift).pt2());
                    pts.push(l1.end_line(i.id).shift_either_direction(-shift).pt2());
                    pts.push(pts[0]);
                    // Many resulting shapes aren't valid rings, but we can still triangulate them.
                    Some(Polygon::buggy_new(pts))
                })() {
                    corners.push(poly);
                }
            } else {
                // When a sidewalk and a shoulder meet, use a simpler shape to connect them.
                let mut pts = vec![
                    l2.end_line(i.id)
                        .shift_either_direction(dir * l2.width / 2.0)
                        .pt2(),
                    l2.end_line(i.id)
                        .shift_either_direction(-dir * l2.width / 2.0)
                        .pt2(),
                    l1.end_line(i.id)
                        .shift_either_direction(-dir * l1.width / 2.0)
                        .pt2(),
                    l1.end_line(i.id)
                        .shift_either_direction(dir * l1.width / 2.0)
                        .pt2(),
                ];
                pts.push(pts[0]);
                if let Ok(ring) = Ring::new(pts) {
                    corners.push(ring.into_polygon());
                }
            }
        }
    }

    corners
}

fn calculate_corner_curbs(i: &Intersection, map: &Map) -> Vec<Polygon> {
    if i.is_footway(map) {
        return Vec::new();
    }

    let mut curbs = Vec::new();

    let thickness = Distance::meters(0.2);
    let shift = |width| (width - thickness) / 2.0;

    for turn in &i.turns {
        if turn.turn_type == TurnType::SharedSidewalkCorner {
            let dir = if turn
                .geom
                .first_pt()
                .angle_to(i.polygon.center())
                .simple_shortest_rotation_towards(
                    turn.geom.first_pt().angle_to(turn.geom.last_pt()),
                )
                > 0.0
            {
                1.0
            } else {
                -1.0
                // At a dead end we're going the long way around
            } * if i.is_deadend() { -1.0 } else { 1.0 };
            let l1 = map.get_l(turn.id.src);
            let l2 = map.get_l(turn.id.dst);

            if l1.width == l2.width {
                // When two sidewalks or two shoulders meet, use the turn geometry to create some
                // nice rounding.
                let width = dir * shift(l1.width);

                if let Some(pl) = (|| {
                    let mut pts = turn.geom.shift_either_direction(width).ok()?.into_points();
                    // TODO Connecting the SharedSidewalkCorner geometry to the curb usually
                    // requires adding a few points from the sidewalk on each end. But sometimes
                    // this causes "zig-zaggy" artifacts. The approx_eq check helps some (but not
                    // all) of those cases, but sometimes introduces visual "gaps". This still
                    // needs more work.
                    let first_line = l2.end_line(i.id).shift_either_direction(-width);
                    if !pts.last().unwrap().approx_eq(first_line.pt2(), thickness) {
                        pts.push(first_line.pt2());
                        pts.push(first_line.unbounded_dist_along(first_line.length() - thickness));
                    }
                    let last_line = l1.end_line(i.id).shift_either_direction(width);
                    if !pts[0].approx_eq(last_line.pt2(), thickness) {
                        pts.insert(0, last_line.pt2());
                        pts.insert(
                            0,
                            last_line.unbounded_dist_along(last_line.length() - thickness),
                        );
                    }
                    PolyLine::deduping_new(pts).ok()
                })() {
                    curbs.push(pl.make_polygons(thickness));
                }
            } else {
                // When a sidewalk and a shoulder meet, use a simpler shape to connect them.
                let l1_line = l1
                    .end_line(i.id)
                    .shift_either_direction(dir * shift(l1.width));
                let l2_line = l2
                    .end_line(i.id)
                    .shift_either_direction(-dir * shift(l2.width));
                if let Ok(pl) = PolyLine::deduping_new(vec![
                    l1_line.unbounded_dist_along(l1_line.length() - thickness),
                    l1_line.pt2(),
                    l2_line.pt2(),
                    l2_line.unbounded_dist_along(l2_line.length() - thickness),
                ]) {
                    curbs.push(pl.make_polygons(thickness));
                }
            }
        }
    }

    curbs
}

// TODO This assumes the lanes change direction only at one point. A two-way cycletrack right at
// the border will look a bit off.
fn calculate_border_arrows(i: &Intersection, r: &Road, map: &Map) -> Vec<Polygon> {
    let mut result = Vec::new();

    let mut width_fwd = Distance::ZERO;
    let mut width_back = Distance::ZERO;
    for l in &r.lanes {
        if l.dir == Direction::Fwd {
            width_fwd += l.width;
        } else {
            width_back += l.width;
        }
    }
    let center = r.get_dir_change_pl(map);

    // These arrows should point from the void to the road
    if !i.outgoing_lanes.is_empty() {
        let (line, width) = if r.dst_i == i.id {
            (
                center.last_line().shift_left(width_back / 2.0).reversed(),
                width_back,
            )
        } else {
            (center.first_line().shift_right(width_fwd / 2.0), width_fwd)
        };
        result.push(
            // DEGENERATE_INTERSECTION_HALF_LENGTH is 2.5m...
            PolyLine::must_new(vec![
                line.unbounded_dist_along(Distance::meters(-9.5)),
                line.unbounded_dist_along(Distance::meters(-0.5)),
            ])
            .make_arrow(width / 3.0, ArrowCap::Triangle),
        );
    }

    // These arrows should point from the road to the void
    if !i.incoming_lanes.is_empty() {
        let (line, width) = if r.dst_i == i.id {
            (
                center.last_line().shift_right(width_fwd / 2.0).reversed(),
                width_fwd,
            )
        } else {
            (center.first_line().shift_left(width_back / 2.0), width_back)
        };
        result.push(
            PolyLine::must_new(vec![
                line.unbounded_dist_along(Distance::meters(-0.5)),
                line.unbounded_dist_along(Distance::meters(-9.5)),
            ])
            .make_arrow(width / 3.0, ArrowCap::Triangle),
        );
    }

    result
}

// TODO A squished octagon would look better
fn make_octagon(center: Pt2D, radius: Distance, facing: Angle) -> Polygon {
    Ring::must_new(
        (0..=8)
            .map(|i| center.project_away(radius, facing.rotate_degs(22.5 + f64::from(i * 360 / 8))))
            .collect(),
    )
    .into_polygon()
}

/// Draws both zebra crosswalks and unmarked crossings
pub fn make_crosswalk(batch: &mut GeomBatch, turn: &Turn, map: &Map, cs: &ColorScheme) {
    if turn.turn_type == TurnType::UnmarkedCrossing {
        make_unmarked_crossing(batch, turn, map, cs);
        return;
    }

    if make_rainbow_crosswalk(batch, turn, map) {
        return;
    }

    // This size also looks better for shoulders
    let width = SIDEWALK_THICKNESS;
    // Start at least width out to not hit sidewalk corners. Also account for the thickness of the
    // crosswalk line itself. Center the lines inside these two boundaries.
    let boundary = width;
    let tile_every = width * 0.6;
    let line = if let Some(l) = turn.crosswalk_line() {
        l
    } else {
        return;
    };

    const CROSSWALK_LINE_THICKNESS: Distance = Distance::const_meters(0.15);

    let available_length = line.length() - (boundary * 2.0);
    if available_length > Distance::ZERO {
        let num_markings = (available_length / tile_every).floor() as usize;
        let mut dist_along =
            boundary + (available_length - tile_every * (num_markings as f64)) / 2.0;
        // TODO Seems to be an off-by-one sometimes. Not enough of these.
        let err = format!("make_crosswalk for {} broke", turn.id);
        for _ in 0..=num_markings {
            let pt1 = line.dist_along(dist_along).expect(&err);
            // Reuse perp_line. Project away an arbitrary amount
            let pt2 = pt1.project_away(Distance::meters(1.0), line.angle());
            batch.push(
                cs.general_road_marking,
                perp_line(Line::must_new(pt1, pt2), width).make_polygons(CROSSWALK_LINE_THICKNESS),
            );

            // Actually every line is a double
            let pt3 = line
                .dist_along(dist_along + 2.0 * CROSSWALK_LINE_THICKNESS)
                .expect(&err);
            let pt4 = pt3.project_away(Distance::meters(1.0), line.angle());
            batch.push(
                cs.general_road_marking,
                perp_line(Line::must_new(pt3, pt4), width).make_polygons(CROSSWALK_LINE_THICKNESS),
            );

            dist_along += tile_every;
        }
    }
}

fn make_rainbow_crosswalk(batch: &mut GeomBatch, turn: &Turn, map: &Map) -> bool {
    // TODO The crosswalks aren't tagged in OSM yet. Manually hardcoding some now.
    let node = map.get_i(turn.id.parent).orig_id.0;
    let way = map.get_parent(turn.id.src).orig_id.osm_way_id.0;
    match (node, way) {
        // Broadway and Pine
        (53073255, 428246441) |
        (53073255, 332601014) |
        // Broadway and Pike
        (53073254, 6447455) |
        (53073254, 607690679) |
        // 10th and Pine
        (53168934, 6456052) |
        // 10th and Pike
        (53200834, 6456052) |
        // 11th and Pine
        (53068795, 607691081) |
        (53068795, 65588105) |
        // 11th and Pike
        (53068794, 65588105) => {}
        _ => { return false; }
    }

    let total_width = map.get_l(turn.id.src).width;
    let colors = vec![
        Color::WHITE,
        Color::RED,
        Color::ORANGE,
        Color::YELLOW,
        Color::GREEN,
        Color::BLUE,
        Color::hex("#8B00FF"),
        Color::WHITE,
    ];
    let band_width = total_width / (colors.len() as f64);
    let total_width = map.get_l(turn.id.src).width;
    let slice = turn
        .geom
        .exact_slice(total_width, turn.geom.length() - total_width)
        .must_shift_left(total_width / 2.0 - band_width / 2.0);
    for (idx, color) in colors.into_iter().enumerate() {
        batch.push(
            color,
            slice
                .must_shift_right(band_width * (idx as f64))
                .make_polygons(band_width),
        );
    }
    true
}

fn make_unmarked_crossing(batch: &mut GeomBatch, turn: &Turn, map: &Map, cs: &ColorScheme) {
    let color = cs.general_road_marking.alpha(0.5);
    let band_width = Distance::meters(0.1);
    let total_width = map.get_l(turn.id.src).width;
    if let Some(line) = turn.crosswalk_line() {
        if let Ok(slice) = line.slice(total_width, line.length() - total_width) {
            batch.push(
                color,
                slice
                    .shift_left(total_width / 2.0 - band_width / 2.0)
                    .make_polygons(band_width),
            );
            batch.push(
                color,
                slice
                    .shift_right(total_width / 2.0 - band_width / 2.0)
                    .make_polygons(band_width),
            );
        }
    }
}

// TODO copied from DrawLane
fn perp_line(l: Line, length: Distance) -> Line {
    let pt1 = l.shift_right(length / 2.0).pt1();
    let pt2 = l.shift_left(length / 2.0).pt1();
    Line::must_new(pt1, pt2)
}