2013-06-27 03:49:50 +04:00
---
2020-02-12 07:09:13 +03:00
language: Python 2 (legacy)
2013-07-04 09:59:13 +04:00
contributors:
- ["Louie Dinh", "http://ldinh.ca"]
2017-04-27 14:19:17 +03:00
- ["Amin Bandali", "https://aminb.org"]
2014-10-10 00:22:24 +04:00
- ["Andre Polykanine", "https://github.com/Oire"]
2015-10-14 19:43:23 +03:00
- ["evuez", "http://github.com/evuez"]
2017-02-09 18:57:30 +03:00
- ["asyne", "https://github.com/justblah"]
2016-12-20 17:04:12 +03:00
- ["habi", "http://github.com/habi"]
2018-02-03 12:28:21 +03:00
- ["Rommel Martinez", "https://ebzzry.io"]
2020-02-12 07:50:44 +03:00
filename: learnpythonlegacy.py
2013-06-27 03:49:50 +04:00
---
2016-07-03 11:47:57 +03:00
Python was created by Guido Van Rossum in the early 90s. It is now one of the
most popular languages in existence. I fell in love with Python for its
2016-03-18 09:53:18 +03:00
syntactic clarity. It's basically executable pseudocode.
2013-06-27 03:49:50 +04:00
2016-07-03 11:47:57 +03:00
Note: This article applies to Python 2.7 specifically, but should be applicable
to Python 2.x. Python 2.7 is reaching end of life and will stop being
maintained in 2020, it is though recommended to start learning Python with
2020-02-12 07:03:08 +03:00
Python 3. For Python 3.x, take a look at the [Python 3 tutorial ](http://learnxinyminutes.com/docs/python/ ).
2015-10-14 03:56:48 +03:00
2016-07-03 11:47:57 +03:00
It is also possible to write Python code which is compatible with Python 2.7
2016-03-18 09:53:18 +03:00
and 3.x at the same time, using Python [`__future__` imports ](https://docs.python.org/2/library/__future__.html ). `__future__` imports
2016-07-03 11:47:57 +03:00
allow you to write Python 3 code that will run on Python 2, so check out the
2016-03-18 09:53:18 +03:00
Python 3 tutorial.
2013-06-27 20:35:59 +04:00
```python
2014-04-14 22:04:44 +04:00
# Single line comments start with a number symbol.
2014-03-22 03:14:55 +04:00
2013-06-30 00:21:55 +04:00
""" Multiline strings can be written
2014-11-11 18:03:50 +03:00
using three "s, and are often used
2013-06-29 08:17:29 +04:00
as comments
2013-06-27 11:29:07 +04:00
"""
2013-06-27 03:49:50 +04:00
2013-06-27 20:35:59 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 1. Primitive Datatypes and Operators
2013-06-27 20:35:59 +04:00
####################################################
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# You have numbers
2014-03-22 03:14:55 +04:00
3 # => 3
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Math is what you would expect
2014-03-22 03:14:55 +04:00
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7
2013-06-27 03:49:50 +04:00
2013-06-27 20:35:59 +04:00
# Division is a bit tricky. It is integer division and floors the results
# automatically.
2014-03-22 03:14:55 +04:00
5 / 2 # => 2
2013-06-27 03:49:50 +04:00
2013-06-27 21:36:57 +04:00
# To fix division we need to learn about floats.
2016-12-20 17:04:12 +03:00
2.0 # This is a float
2014-03-22 03:14:55 +04:00
11.0 / 4.0 # => 2.75 ahhh...much better
2013-06-27 21:36:57 +04:00
2015-05-01 00:56:01 +03:00
# Result of integer division truncated down both for positive and negative.
2016-12-20 17:04:12 +03:00
5 // 3 # => 1
5.0 // 3.0 # => 1.0 # works on floats too
2014-08-07 00:43:37 +04:00
-5 // 3 # => -2
2016-12-20 17:04:12 +03:00
-5.0 // 3.0 # => -2.0
2014-07-13 22:51:34 +04:00
2015-10-16 10:27:31 +03:00
# Note that we can also import division module(Section 6 Modules)
# to carry out normal division with just one '/'.
from __future__ import division
2016-12-20 17:04:12 +03:00
11 / 4 # => 2.75 ...normal division
11 // 4 # => 2 ...floored division
2015-10-16 10:27:31 +03:00
2014-07-13 22:51:34 +04:00
# Modulo operation
2016-12-20 17:04:12 +03:00
7 % 3 # => 1
2014-07-13 22:51:34 +04:00
2014-11-11 18:03:50 +03:00
# Exponentiation (x to the yth power)
2016-12-20 17:04:12 +03:00
2 ** 4 # => 16
2014-10-09 23:49:47 +04:00
2013-06-27 11:29:07 +04:00
# Enforce precedence with parentheses
2014-03-22 03:14:55 +04:00
(1 + 3) * 2 # => 8
2013-06-27 03:49:50 +04:00
2014-09-08 03:22:01 +04:00
# Boolean Operators
2014-10-09 20:50:55 +04:00
# Note "and" and "or" are case-sensitive
2016-12-20 17:04:12 +03:00
True and False # => False
False or True # => True
2014-10-09 20:50:55 +04:00
# Note using Bool operators with ints
2016-12-20 17:04:12 +03:00
0 and 2 # => 0
-5 or 0 # => -5
0 == False # => True
2 == True # => False
1 == True # => True
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# negate with not
2014-03-22 03:14:55 +04:00
not True # => False
not False # => True
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Equality is ==
2014-03-22 03:14:55 +04:00
1 == 1 # => True
2 == 1 # => False
2013-06-27 03:49:50 +04:00
2013-06-28 11:52:39 +04:00
# Inequality is !=
2014-03-22 03:14:55 +04:00
1 != 1 # => False
2 != 1 # => True
2013-06-28 11:52:39 +04:00
# More comparisons
2014-03-22 03:14:55 +04:00
1 < 10 # = > True
1 > 10 # => False
2 < = 2 # => True
2 >= 2 # => True
2013-06-28 11:52:39 +04:00
2013-08-07 18:48:11 +04:00
# Comparisons can be chained!
2014-03-22 03:14:55 +04:00
1 < 2 < 3 # = > True
2 < 3 < 2 # = > False
2013-06-28 11:52:39 +04:00
2013-06-27 11:29:07 +04:00
# Strings are created with " or '
"This is a string."
'This is also a string.'
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Strings can be added too!
2014-03-22 03:14:55 +04:00
"Hello " + "world!" # => "Hello world!"
2015-04-22 23:00:40 +03:00
# Strings can be added without using '+'
"Hello " "world!" # => "Hello world!"
2013-06-27 03:49:50 +04:00
2014-11-17 10:26:19 +03:00
# ... or multiplied
"Hello" * 3 # => "HelloHelloHello"
2013-06-27 11:29:07 +04:00
# A string can be treated like a list of characters
2014-03-22 03:14:55 +04:00
"This is a string"[0] # => 'T'
2013-06-27 03:49:50 +04:00
2016-06-16 16:18:30 +03:00
# You can find the length of a string
len("This is a string") # => 16
2016-12-20 17:04:12 +03:00
# String formatting with %
# Even though the % string operator will be deprecated on Python 3.1 and removed
# later at some time, it may still be good to know how it works.
2015-10-20 07:27:53 +03:00
x = 'apple'
y = 'lemon'
2016-12-20 17:04:12 +03:00
z = "The items in the basket are %s and %s" % (x, y)
2013-06-29 08:20:08 +04:00
# A newer way to format strings is the format method.
# This method is the preferred way
2015-10-28 13:55:54 +03:00
"{} is a {}".format("This", "placeholder")
2013-06-29 08:20:08 +04:00
"{0} can be {1}".format("strings", "formatted")
2013-07-01 02:16:55 +04:00
# You can use keywords if you don't want to count.
"{name} wants to eat {food}".format(name="Bob", food="lasagna")
2013-06-29 08:20:08 +04:00
2013-06-27 11:29:07 +04:00
# None is an object
2014-03-22 03:14:55 +04:00
None # => None
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Don't use the equality "==" symbol to compare objects to None
# Use "is" instead
2014-03-22 03:14:55 +04:00
"etc" is None # => False
None is None # => True
2013-06-30 08:35:11 +04:00
2013-07-01 17:21:03 +04:00
# The 'is' operator tests for object identity. This isn't
# very useful when dealing with primitive values, but is
# very useful when dealing with objects.
2015-10-30 00:04:41 +03:00
# Any object can be used in a Boolean context.
# The following values are considered falsey:
# - None
# - zero of any numeric type (e.g., 0, 0L, 0.0, 0j)
# - empty sequences (e.g., '', (), [])
# - empty containers (e.g., {}, set())
# - instances of user-defined classes meeting certain conditions
# see: https://docs.python.org/2/reference/datamodel.html#object.__nonzero__
#
# All other values are truthy (using the bool() function on them returns True).
2014-03-22 03:14:55 +04:00
bool(0) # => False
bool("") # => False
2013-06-30 08:35:11 +04:00
2013-06-27 03:49:50 +04:00
2013-06-27 20:35:59 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 2. Variables and Collections
2013-06-27 20:35:59 +04:00
####################################################
2013-06-27 03:49:50 +04:00
2015-04-24 20:59:01 +03:00
# Python has a print statement
2016-12-20 17:04:12 +03:00
print "I'm Python. Nice to meet you!" # => I'm Python. Nice to meet you!
2013-06-27 03:49:50 +04:00
2015-10-11 17:21:43 +03:00
# Simple way to get input data from console
2016-12-20 17:04:12 +03:00
input_string_var = raw_input(
"Enter some data: ") # Returns the data as a string
input_var = input("Enter some data: ") # Evaluates the data as python code
2015-10-14 07:57:25 +03:00
# Warning: Caution is recommended for input() method usage
# Note: In python 3, input() is deprecated and raw_input() is renamed to input()
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# No need to declare variables before assigning to them.
2016-12-20 17:04:12 +03:00
some_var = 5 # Convention is to use lower_case_with_underscores
2014-03-22 03:14:55 +04:00
some_var # => 5
2013-06-27 03:49:50 +04:00
2013-07-01 02:16:55 +04:00
# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_other_var # Raises a name error
2013-06-27 03:49:50 +04:00
2013-06-29 08:11:54 +04:00
# if can be used as an expression
2015-10-16 18:12:03 +03:00
# Equivalent of C's '?:' ternary operator
2014-03-22 03:14:55 +04:00
"yahoo!" if 3 > 2 else 2 # => "yahoo!"
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6]
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Add stuff to the end of a list with append
2016-12-20 17:04:12 +03:00
li.append(1) # li is now [1]
li.append(2) # li is now [1, 2]
li.append(4) # li is now [1, 2, 4]
li.append(3) # li is now [1, 2, 4, 3]
2013-06-27 21:36:57 +04:00
# Remove from the end with pop
2016-12-20 17:04:12 +03:00
li.pop() # => 3 and li is now [1, 2, 4]
2013-06-27 21:36:57 +04:00
# Let's put it back
2016-12-20 17:04:12 +03:00
li.append(3) # li is now [1, 2, 4, 3] again.
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Access a list like you would any array
2014-03-22 03:14:55 +04:00
li[0] # => 1
2014-11-17 10:26:19 +03:00
# Assign new values to indexes that have already been initialized with =
li[0] = 42
li[0] # => 42
li[0] = 1 # Note: setting it back to the original value
2013-06-27 21:36:57 +04:00
# Look at the last element
2014-03-22 03:14:55 +04:00
li[-1] # => 3
2013-06-28 05:22:30 +04:00
2013-06-27 11:29:07 +04:00
# Looking out of bounds is an IndexError
2014-03-22 03:14:55 +04:00
li[4] # Raises an IndexError
2013-06-27 03:49:50 +04:00
2013-06-27 21:53:43 +04:00
# You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
2014-03-22 03:14:55 +04:00
li[1:3] # => [2, 4]
2013-06-27 21:36:57 +04:00
# Omit the beginning
2014-03-22 03:14:55 +04:00
li[2:] # => [4, 3]
2013-06-29 04:11:32 +04:00
# Omit the end
2014-03-22 03:14:55 +04:00
li[:3] # => [1, 2, 4]
2014-02-18 06:07:29 +04:00
# Select every second entry
2016-12-20 17:04:12 +03:00
li[::2] # =>[1, 4]
2015-05-01 02:31:38 +03:00
# Reverse a copy of the list
2016-12-20 17:04:12 +03:00
li[::-1] # => [3, 4, 2, 1]
2014-02-18 06:07:29 +04:00
# Use any combination of these to make advanced slices
# li[start:end:step]
2013-06-27 21:36:57 +04:00
2013-08-23 10:54:21 +04:00
# Remove arbitrary elements from a list with "del"
2016-12-20 17:04:12 +03:00
del li[2] # li is now [1, 2, 3]
2015-10-02 21:00:54 +03:00
2013-06-27 11:29:07 +04:00
# You can add lists
2016-12-20 17:04:12 +03:00
li + other_li # => [1, 2, 3, 4, 5, 6]
2014-11-17 10:26:19 +03:00
# Note: values for li and for other_li are not modified.
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Concatenate lists with "extend()"
2016-12-20 17:04:12 +03:00
li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]
2013-06-27 03:49:50 +04:00
2015-10-14 19:43:23 +03:00
# Remove first occurrence of a value
li.remove(2) # li is now [1, 3, 4, 5, 6]
li.remove(2) # Raises a ValueError as 2 is not in the list
# Insert an element at a specific index
li.insert(1, 2) # li is now [1, 2, 3, 4, 5, 6] again
# Get the index of the first item found
2015-10-31 09:47:55 +03:00
li.index(2) # => 1
2015-10-14 19:43:23 +03:00
li.index(7) # Raises a ValueError as 7 is not in the list
2013-08-23 10:54:21 +04:00
# Check for existence in a list with "in"
2016-12-20 17:04:12 +03:00
1 in li # => True
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Examine the length with "len()"
2016-12-20 17:04:12 +03:00
len(li) # => 6
2013-06-30 08:35:11 +04:00
2013-06-27 21:36:57 +04:00
# Tuples are like lists but are immutable.
2013-06-27 11:29:07 +04:00
tup = (1, 2, 3)
2016-12-20 17:04:12 +03:00
tup[0] # => 1
2013-07-01 02:16:55 +04:00
tup[0] = 3 # Raises a TypeError
2013-06-27 03:49:50 +04:00
2013-06-27 21:36:57 +04:00
# You can do all those list thingies on tuples too
2016-12-20 17:04:12 +03:00
len(tup) # => 3
tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
tup[:2] # => (1, 2)
2 in tup # => True
2013-06-27 21:36:57 +04:00
2013-06-30 08:35:11 +04:00
# You can unpack tuples (or lists) into variables
2016-12-20 17:04:12 +03:00
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
d, e, f = 4, 5, 6 # you can leave out the parentheses
2013-06-27 21:36:57 +04:00
# Tuples are created by default if you leave out the parentheses
2016-12-20 17:04:12 +03:00
g = 4, 5, 6 # => (4, 5, 6)
2013-06-28 05:27:14 +04:00
# Now look how easy it is to swap two values
2016-12-20 17:04:12 +03:00
e, d = d, e # d is now 5 and e is now 4
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Dictionaries store mappings
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Look up values with []
2016-12-20 17:04:12 +03:00
filled_dict["one"] # => 1
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Get all keys as a list with "keys()"
2016-12-20 17:04:12 +03:00
filled_dict.keys() # => ["three", "two", "one"]
2013-06-27 20:35:59 +04:00
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly.
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Get all values as a list with "values()"
2016-12-20 17:04:12 +03:00
filled_dict.values() # => [3, 2, 1]
2013-06-27 20:35:59 +04:00
# Note - Same as above regarding key ordering.
2013-06-27 03:49:50 +04:00
2016-06-26 15:30:39 +03:00
# Get all key-value pairs as a list of tuples with "items()"
2017-09-07 23:26:46 +03:00
filled_dict.items() # => [("one", 1), ("two", 2), ("three", 3)]
2016-06-26 15:30:39 +03:00
2013-08-23 10:54:21 +04:00
# Check for existence of keys in a dictionary with "in"
2016-12-20 17:04:12 +03:00
"one" in filled_dict # => True
1 in filled_dict # => False
2013-06-27 03:49:50 +04:00
2013-08-07 18:48:11 +04:00
# Looking up a non-existing key is a KeyError
2016-12-20 17:04:12 +03:00
filled_dict["four"] # KeyError
2013-06-28 18:59:25 +04:00
2013-08-23 10:54:21 +04:00
# Use "get()" method to avoid the KeyError
2016-12-20 17:04:12 +03:00
filled_dict.get("one") # => 1
filled_dict.get("four") # => None
2013-06-29 00:55:16 +04:00
# The get method supports a default argument when the value is missing
2016-12-20 17:04:12 +03:00
filled_dict.get("one", 4) # => 1
filled_dict.get("four", 4) # => 4
2014-12-23 22:23:22 +03:00
# note that filled_dict.get("four") is still => None
2014-11-17 10:26:19 +03:00
# (get doesn't set the value in the dictionary)
# set the value of a key with a syntax similar to lists
filled_dict["four"] = 4 # now, filled_dict["four"] => 4
2013-06-28 18:59:25 +04:00
2013-09-20 14:02:58 +04:00
# "setdefault()" inserts into a dictionary only if the given key isn't present
2014-03-22 03:14:55 +04:00
filled_dict.setdefault("five", 5) # filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) # filled_dict["five"] is still 5
2013-06-28 18:59:25 +04:00
2019-02-16 21:07:14 +03:00
# You can declare sets (which are like unordered lists that cannot contain
# duplicate values) using the set object.
2013-06-27 11:29:07 +04:00
empty_set = set()
2013-08-23 01:06:47 +04:00
# Initialize a "set()" with a bunch of values
2016-12-20 17:04:12 +03:00
some_set = set([1, 2, 2, 3, 4]) # some_set is now set([1, 2, 3, 4])
2013-06-29 08:15:33 +04:00
2014-11-17 10:26:19 +03:00
# order is not guaranteed, even though it may sometimes look sorted
another_set = set([4, 3, 2, 2, 1]) # another_set is now set([1, 2, 3, 4])
2013-06-29 08:15:33 +04:00
# Since Python 2.7, {} can be used to declare a set
2016-12-20 17:04:12 +03:00
filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4}
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Add more items to a set
2016-12-20 17:04:12 +03:00
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Do set intersection with &
2013-06-30 10:13:53 +04:00
other_set = {3, 4, 5, 6}
2016-12-20 17:04:12 +03:00
filled_set & other_set # => {3, 4, 5}
2013-06-29 08:15:33 +04:00
2013-06-27 11:29:07 +04:00
# Do set union with |
2016-12-20 17:04:12 +03:00
filled_set | other_set # => {1, 2, 3, 4, 5, 6}
2013-06-29 08:15:33 +04:00
2013-06-27 21:36:57 +04:00
# Do set difference with -
2016-12-20 17:04:12 +03:00
{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
2013-06-27 03:49:50 +04:00
2015-10-14 19:43:23 +03:00
# Do set symmetric difference with ^
{1, 2, 3, 4} ^ {2, 3, 5} # => {1, 4, 5}
# Check if set on the left is a superset of set on the right
2016-12-20 17:04:12 +03:00
{1, 2} >= {1, 2, 3} # => False
2015-10-14 19:43:23 +03:00
# Check if set on the left is a subset of set on the right
2016-12-20 17:04:12 +03:00
{1, 2} < = {1, 2, 3} # => True
2015-10-14 19:43:23 +03:00
2013-06-27 11:29:07 +04:00
# Check for existence in a set with in
2016-12-20 17:04:12 +03:00
2 in filled_set # => True
10 in filled_set # => False
2017-10-31 11:54:09 +03:00
10 not in filled_set # => True
# Check data type of variable
type(li) # => list
type(filled_dict) # => dict
type(5) # => int
2013-06-27 03:49:50 +04:00
2013-06-27 20:35:59 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 3. Control Flow
2013-06-27 20:35:59 +04:00
####################################################
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Let's just make a variable
some_var = 5
2013-06-27 03:49:50 +04:00
2013-07-01 02:16:55 +04:00
# Here is an if statement. Indentation is significant in python!
2013-08-07 18:48:11 +04:00
# prints "some_var is smaller than 10"
2013-06-27 11:29:07 +04:00
if some_var > 10:
2015-04-24 20:27:33 +03:00
print "some_var is totally bigger than 10."
2016-12-20 17:04:12 +03:00
elif some_var < 10: # This elif clause is optional .
2015-04-24 20:27:33 +03:00
print "some_var is smaller than 10."
2016-12-20 17:04:12 +03:00
else: # This is optional too.
2015-04-24 20:27:33 +03:00
print "some_var is indeed 10."
2013-06-27 03:49:50 +04:00
2013-06-27 11:45:11 +04:00
"""
For loops iterate over lists
prints:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
2013-06-27 11:29:07 +04:00
for animal in ["dog", "cat", "mouse"]:
2015-07-17 00:45:25 +03:00
# You can use {0} to interpolate formatted strings. (See above.)
print "{0} is a mammal".format(animal)
2013-09-20 14:02:58 +04:00
2013-06-30 08:35:11 +04:00
"""
2013-09-20 14:02:58 +04:00
"range(number)" returns a list of numbers
2013-06-30 08:35:11 +04:00
from zero to the given number
prints:
0
1
2
3
"""
for i in range(4):
2015-04-24 20:27:33 +03:00
print i
2013-06-27 03:49:50 +04:00
2015-04-23 23:20:17 +03:00
"""
"range(lower, upper)" returns a list of numbers
from the lower number to the upper number
prints:
4
5
6
7
"""
for i in range(4, 8):
2015-04-24 20:27:33 +03:00
print i
2015-04-23 23:20:17 +03:00
2013-06-27 11:45:11 +04:00
"""
While loops go until a condition is no longer met.
prints:
0
1
2013-06-29 00:29:03 +04:00
2
2013-06-27 11:45:11 +04:00
3
"""
2013-06-27 11:29:07 +04:00
x = 0
2013-06-27 11:45:11 +04:00
while x < 4:
2015-04-24 20:27:33 +03:00
print x
2013-06-27 20:35:59 +04:00
x += 1 # Shorthand for x = x + 1
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Handle exceptions with a try/except block
2013-06-28 05:18:05 +04:00
# Works on Python 2.6 and up:
2013-06-27 11:29:07 +04:00
try:
2013-08-23 10:54:21 +04:00
# Use "raise" to raise an error
2013-06-27 21:53:43 +04:00
raise IndexError("This is an index error")
2013-06-27 11:29:07 +04:00
except IndexError as e:
2016-12-20 17:04:12 +03:00
pass # Pass is just a no-op. Usually you would do recovery here.
2014-08-02 18:07:28 +04:00
except (TypeError, NameError):
2016-12-20 17:04:12 +03:00
pass # Multiple exceptions can be handled together, if required.
else: # Optional clause to the try/except block. Must follow all except blocks
print "All good!" # Runs only if the code in try raises no exceptions
finally: # Execute under all circumstances
2015-09-01 19:27:40 +03:00
print "We can clean up resources here"
2013-06-27 03:49:50 +04:00
2015-09-01 20:23:31 +03:00
# Instead of try/finally to cleanup resources you can use a with statement
2015-09-01 19:27:40 +03:00
with open("myfile.txt") as f:
for line in f:
print line
2013-06-27 03:49:50 +04:00
2016-03-18 09:53:18 +03:00
2013-06-27 20:35:59 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 4. Functions
2013-06-27 20:35:59 +04:00
####################################################
2013-06-27 03:49:50 +04:00
2013-08-23 10:54:21 +04:00
# Use "def" to create new functions
2013-06-27 11:29:07 +04:00
def add(x, y):
2015-07-17 00:45:25 +03:00
print "x is {0} and y is {1}".format(x, y)
2016-12-20 17:04:12 +03:00
return x + y # Return values with a return statement
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# Calling functions with parameters
2016-12-20 17:04:12 +03:00
add(5, 6) # => prints out "x is 5 and y is 6" and returns 11
2013-07-03 19:49:29 +04:00
2013-06-27 11:29:07 +04:00
# Another way to call functions is with keyword arguments
2016-12-20 17:04:12 +03:00
add(y=6, x=5) # Keyword arguments can arrive in any order.
2013-06-27 03:49:50 +04:00
2014-03-22 03:14:55 +04:00
2013-06-27 21:53:43 +04:00
# You can define functions that take a variable number of
2015-11-02 16:30:15 +03:00
# positional args, which will be interpreted as a tuple by using *
2013-06-27 11:29:07 +04:00
def varargs(*args):
return args
2013-06-27 03:49:50 +04:00
2016-12-20 17:04:12 +03:00
varargs(1, 2, 3) # => (1, 2, 3)
2013-06-27 03:49:50 +04:00
2013-06-27 21:53:43 +04:00
# You can define functions that take a variable number of
2015-11-02 16:30:15 +03:00
# keyword args, as well, which will be interpreted as a dict by using **
2013-06-27 11:29:07 +04:00
def keyword_args(**kwargs):
return kwargs
2013-06-27 03:49:50 +04:00
2016-12-20 17:04:12 +03:00
2013-06-27 11:29:07 +04:00
# Let's call it to see what happens
2016-12-20 17:04:12 +03:00
keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
2014-03-22 03:14:55 +04:00
2013-06-27 03:49:50 +04:00
2013-06-27 21:53:43 +04:00
# You can do both at once, if you like
2013-07-01 02:16:55 +04:00
def all_the_args(*args, **kwargs):
2015-04-24 20:27:33 +03:00
print args
print kwargs
2016-12-20 17:04:12 +03:00
2013-06-28 05:18:05 +04:00
"""
all_the_args(1, 2, a=3, b=4) prints:
2013-07-01 02:16:55 +04:00
(1, 2)
2013-06-28 05:18:05 +04:00
{"a": 3, "b": 4}
"""
2013-06-27 21:53:43 +04:00
2013-08-23 01:06:47 +04:00
# When calling functions, you can do the opposite of args/kwargs!
2014-11-17 10:26:19 +03:00
# Use * to expand positional args and use ** to expand keyword args.
2013-06-28 18:59:25 +04:00
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
2018-02-03 12:28:21 +03:00
all_the_args(*args) # equivalent to all_the_args(1, 2, 3, 4)
all_the_args(**kwargs) # equivalent to all_the_args(a=3, b=4)
all_the_args(*args, **kwargs) # equivalent to all_the_args(1, 2, 3, 4, a=3, b=4)
2016-12-20 17:04:12 +03:00
2014-03-22 03:14:55 +04:00
2014-11-17 10:26:19 +03:00
# you can pass args and kwargs along to other functions that take args/kwargs
# by expanding them with * and ** respectively
def pass_all_the_args(*args, **kwargs):
all_the_args(*args, **kwargs)
print varargs(*args)
print keyword_args(**kwargs)
2016-12-20 17:04:12 +03:00
2015-05-01 00:56:01 +03:00
# Function Scope
2014-07-13 22:51:34 +04:00
x = 5
2016-12-20 17:04:12 +03:00
2015-10-14 19:43:23 +03:00
def set_x(num):
2014-07-13 22:51:34 +04:00
# Local var x not the same as global variable x
2016-12-20 17:04:12 +03:00
x = num # => 43
print x # => 43
2015-05-01 00:56:01 +03:00
2015-10-14 19:43:23 +03:00
def set_global_x(num):
2014-07-13 22:51:34 +04:00
global x
2016-12-20 17:04:12 +03:00
print x # => 5
x = num # global var x is now set to 6
print x # => 6
2014-07-13 22:51:34 +04:00
2015-10-14 19:43:23 +03:00
set_x(43)
set_global_x(6)
2013-06-27 03:49:50 +04:00
2016-12-20 17:04:12 +03:00
2013-06-27 11:29:07 +04:00
# Python has first class functions
def create_adder(x):
def adder(y):
return x + y
2016-12-20 17:04:12 +03:00
2013-06-27 11:29:07 +04:00
return adder
2013-06-27 03:49:50 +04:00
2016-12-20 17:04:12 +03:00
2013-06-28 05:22:30 +04:00
add_10 = create_adder(10)
2016-12-20 17:04:12 +03:00
add_10(3) # => 13
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# There are also anonymous functions
2016-12-20 17:04:12 +03:00
(lambda x: x > 2)(3) # => True
(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# There are built-in higher order functions
2016-12-20 17:04:12 +03:00
map(add_10, [1, 2, 3]) # => [11, 12, 13]
map(max, [1, 2, 3], [4, 2, 1]) # => [4, 2, 3]
2015-10-07 09:01:28 +03:00
2016-12-20 17:04:12 +03:00
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
2013-06-27 03:49:50 +04:00
2013-06-27 11:29:07 +04:00
# We can use list comprehensions for nice maps and filters
2014-03-22 03:14:55 +04:00
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
2016-12-20 17:04:12 +03:00
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
2013-06-27 03:49:50 +04:00
2016-07-03 11:47:57 +03:00
# You can construct set and dict comprehensions as well.
2016-11-21 12:38:39 +03:00
{x for x in 'abcddeef' if x in 'abc'} # => {'a', 'b', 'c'}
2016-12-20 17:04:12 +03:00
{x: x ** 2 for x in range(5)} # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
2016-07-03 11:47:57 +03:00
2014-11-17 10:26:19 +03:00
2013-06-27 20:35:59 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 5. Classes
2013-06-27 20:35:59 +04:00
####################################################
2013-06-27 03:49:50 +04:00
2013-06-27 20:35:59 +04:00
# We subclass from object to get a class.
2013-06-27 11:29:07 +04:00
class Human(object):
2013-08-07 18:48:11 +04:00
# A class attribute. It is shared by all instances of this class
2013-06-27 11:29:07 +04:00
species = "H. sapiens"
2013-06-27 03:49:50 +04:00
2014-07-30 13:28:21 +04:00
# Basic initializer, this is called when this class is instantiated.
# Note that the double leading and trailing underscores denote objects
# or attributes that are used by python but that live in user-controlled
# namespaces. You should not invent such names on your own.
2013-06-27 11:29:07 +04:00
def __init__ (self, name):
2013-06-27 20:35:59 +04:00
# Assign the argument to the instance's name attribute
self.name = name
2013-06-27 11:29:07 +04:00
2015-10-14 19:43:23 +03:00
# Initialize property
self.age = 0
2013-08-23 10:54:21 +04:00
# An instance method. All methods take "self" as the first argument
2013-06-27 11:29:07 +04:00
def say(self, msg):
2015-07-17 00:45:25 +03:00
return "{0}: {1}".format(self.name, msg)
2013-06-27 11:29:07 +04:00
# A class method is shared among all instances
2013-06-27 20:35:59 +04:00
# They are called with the calling class as the first argument
2013-06-27 11:29:07 +04:00
@classmethod
def get_species(cls):
return cls.species
2013-06-27 21:36:57 +04:00
# A static method is called without a class or instance reference
2013-06-27 11:29:07 +04:00
@staticmethod
2013-06-27 11:45:11 +04:00
def grunt():
2013-06-27 11:29:07 +04:00
return "*grunt*"
2015-10-14 19:43:23 +03:00
# A property is just like a getter.
# It turns the method age() into an read-only attribute
# of the same name.
@property
def age(self):
return self._age
# This allows the property to be set
@age .setter
def age(self, age):
self._age = age
# This allows the property to be deleted
@age .deleter
def age(self):
del self._age
2013-06-27 11:29:07 +04:00
# Instantiate a class
2013-06-27 21:36:57 +04:00
i = Human(name="Ian")
2016-12-20 17:04:12 +03:00
print i.say("hi") # prints out "Ian: hi"
2013-06-27 20:35:59 +04:00
2013-06-27 21:36:57 +04:00
j = Human("Joel")
2015-04-24 20:27:33 +03:00
print j.say("hello") # prints out "Joel: hello"
2013-06-27 11:29:07 +04:00
# Call our class method
2016-12-20 17:04:12 +03:00
i.get_species() # => "H. sapiens"
2013-06-27 11:29:07 +04:00
# Change the shared attribute
2013-06-28 23:59:45 +04:00
Human.species = "H. neanderthalensis"
2016-12-20 17:04:12 +03:00
i.get_species() # => "H. neanderthalensis"
j.get_species() # => "H. neanderthalensis"
2013-06-27 11:29:07 +04:00
# Call the static method
2016-12-20 17:04:12 +03:00
Human.grunt() # => "*grunt*"
2013-06-30 08:35:11 +04:00
2015-10-14 19:43:23 +03:00
# Update the property
i.age = 42
# Get the property
2016-12-20 17:04:12 +03:00
i.age # => 42
2015-10-14 19:43:23 +03:00
# Delete the property
del i.age
i.age # => raises an AttributeError
2013-06-30 08:35:11 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 6. Modules
2013-06-30 08:35:11 +04:00
####################################################
# You can import modules
import math
2016-12-20 17:04:12 +03:00
2019-02-01 19:25:22 +03:00
print math.sqrt(16) # => 4.0
2013-06-30 08:35:11 +04:00
# You can get specific functions from a module
from math import ceil, floor
2016-12-20 17:04:12 +03:00
2015-04-24 20:27:33 +03:00
print ceil(3.7) # => 4.0
2016-12-20 17:04:12 +03:00
print floor(3.7) # => 3.0
2013-06-30 08:35:11 +04:00
# You can import all functions from a module.
# Warning: this is not recommended
from math import *
# You can shorten module names
import math as m
2016-12-20 17:04:12 +03:00
math.sqrt(16) == m.sqrt(16) # => True
2014-11-17 10:26:19 +03:00
# you can also test that the functions are equivalent
from math import sqrt
2016-12-20 17:04:12 +03:00
2014-11-17 10:26:19 +03:00
math.sqrt == m.sqrt == sqrt # => True
2013-06-30 08:35:11 +04:00
# Python modules are just ordinary python files. You
2013-09-20 14:02:58 +04:00
# can write your own, and import them. The name of the
2013-07-01 17:21:03 +04:00
# module is the same as the name of the file.
2013-06-30 08:35:11 +04:00
2013-07-03 02:33:48 +04:00
# You can find out which functions and attributes
# defines a module.
import math
2016-12-20 17:04:12 +03:00
2013-07-03 02:33:48 +04:00
dir(math)
2016-12-20 17:04:12 +03:00
2015-10-02 16:42:57 +03:00
# If you have a Python script named math.py in the same
2016-07-03 11:47:57 +03:00
# folder as your current script, the file math.py will
# be loaded instead of the built-in Python module.
2015-10-02 16:42:57 +03:00
# This happens because the local folder has priority
2016-07-03 11:47:57 +03:00
# over Python's built-in libraries.
2015-10-02 16:42:57 +03:00
2013-06-30 08:35:11 +04:00
2014-02-16 22:36:09 +04:00
####################################################
2016-12-20 17:04:12 +03:00
# 7. Advanced
2014-02-16 22:36:09 +04:00
####################################################
2016-06-26 15:50:05 +03:00
# Generators
2016-07-03 11:47:57 +03:00
# A generator "generates" values as they are requested instead of storing
2016-06-26 15:50:05 +03:00
# everything up front
2016-07-03 11:47:57 +03:00
# The following method (*NOT* a generator) will double all values and store it
2016-06-26 15:50:05 +03:00
# in `double_arr`. For large size of iterables, that might get huge!
2014-02-16 22:36:09 +04:00
def double_numbers(iterable):
2016-06-26 15:50:05 +03:00
double_arr = []
for i in iterable:
double_arr.append(i + i)
2016-11-15 15:10:56 +03:00
return double_arr
2016-06-26 15:50:05 +03:00
2016-12-20 17:04:12 +03:00
2016-07-03 11:47:57 +03:00
# Running the following would mean we'll double all values first and return all
2016-06-26 15:50:05 +03:00
# of them back to be checked by our condition
for value in double_numbers(range(1000000)): # `test_non_generator`
print value
if value > 5:
break
2016-12-20 17:04:12 +03:00
2016-07-03 11:47:57 +03:00
# We could instead use a generator to "generate" the doubled value as the item
2016-06-26 15:50:05 +03:00
# is being requested
def double_numbers_generator(iterable):
2014-02-16 22:36:09 +04:00
for i in iterable:
yield i + i
2016-12-20 17:04:12 +03:00
2016-06-26 15:50:05 +03:00
# Running the same code as before, but with a generator, now allows us to iterate
2016-07-03 11:47:57 +03:00
# over the values and doubling them one by one as they are being consumed by
# our logic. Hence as soon as we see a value > 5, we break out of the
2016-06-26 15:50:05 +03:00
# loop and don't need to double most of the values sent in (MUCH FASTER!)
for value in double_numbers_generator(xrange(1000000)): # `test_generator`
print value
if value > 5:
2014-02-16 22:36:09 +04:00
break
2016-07-03 11:47:57 +03:00
# BTW: did you notice the use of `range` in `test_non_generator` and `xrange` in `test_generator`?
2016-06-26 15:50:05 +03:00
# Just as `double_numbers_generator` is the generator version of `double_numbers`
# We have `xrange` as the generator version of `range`
# `range` would return back and array with 1000000 values for us to use
# `xrange` would generate 1000000 values for us as we request / iterate over those items
2016-07-03 11:47:57 +03:00
# Just as you can create a list comprehension, you can create generator
# comprehensions as well.
2016-12-20 17:04:12 +03:00
values = (-x for x in [1, 2, 3, 4, 5])
2016-07-03 11:47:57 +03:00
for x in values:
print(x) # prints -1 -2 -3 -4 -5 to console/terminal
# You can also cast a generator comprehension directly to a list.
2016-12-20 17:04:12 +03:00
values = (-x for x in [1, 2, 3, 4, 5])
2016-07-03 11:47:57 +03:00
gen_to_list = list(values)
print(gen_to_list) # => [-1, -2, -3, -4, -5]
2016-06-26 15:50:05 +03:00
2014-02-16 22:36:09 +04:00
# Decorators
2017-02-09 18:57:30 +03:00
# A decorator is a higher order function, which accepts and returns a function.
# Simple usage example – add_apples decorator will add 'Apple' element into
# fruits list returned by get_fruits target function.
def add_apples(func):
def get_fruits():
fruits = func()
fruits.append('Apple')
return fruits
return get_fruits
@add_apples
def get_fruits():
return ['Banana', 'Mango', 'Orange']
# Prints out the list of fruits with 'Apple' element in it:
# Banana, Mango, Orange, Apple
print ', '.join(get_fruits())
2014-02-16 22:36:09 +04:00
# in this example beg wraps say
2014-03-22 03:14:55 +04:00
# Beg will call say. If say_please is True then it will change the returned
# message
2014-02-16 22:36:09 +04:00
from functools import wraps
2016-12-20 17:04:12 +03:00
2014-07-30 13:28:21 +04:00
def beg(target_function):
@wraps (target_function)
2014-02-16 22:36:09 +04:00
def wrapper(*args, **kwargs):
2014-07-30 13:28:21 +04:00
msg, say_please = target_function(*args, **kwargs)
2014-02-16 22:36:09 +04:00
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
return wrapper
2016-12-20 17:04:12 +03:00
2014-02-16 22:36:09 +04:00
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
2016-12-20 17:04:12 +03:00
2015-04-24 20:27:33 +03:00
print say() # Can you buy me a beer?
print say(say_please=True) # Can you buy me a beer? Please! I am poor :(
2013-06-28 05:22:30 +04:00
```
2013-08-06 04:54:50 +04:00
## Ready For More?
2013-06-29 04:21:24 +04:00
2013-08-06 04:54:50 +04:00
### Free Online
2013-06-29 04:21:24 +04:00
2015-07-23 21:24:40 +03:00
* [Automate the Boring Stuff with Python ](https://automatetheboringstuff.com )
2013-07-01 03:02:37 +04:00
* [Learn Python The Hard Way ](http://learnpythonthehardway.org/book/ )
* [Dive Into Python ](http://www.diveintopython.net/ )
2015-10-19 15:01:14 +03:00
* [The Official Docs ](http://docs.python.org/2/ )
2013-07-01 03:18:20 +04:00
* [Hitchhiker's Guide to Python ](http://docs.python-guide.org/en/latest/ )
2013-07-01 21:32:42 +04:00
* [Python Module of the Week ](http://pymotw.com/2/ )
2013-11-19 20:17:28 +04:00
* [A Crash Course in Python for Scientists ](http://nbviewer.ipython.org/5920182 )
2015-07-05 17:35:31 +03:00
* [First Steps With Python ](https://realpython.com/learn/python-first-steps/ )
2015-12-17 00:41:07 +03:00
* [LearnPython ](http://www.learnpython.org/ )
2015-10-26 05:19:40 +03:00
* [Fullstack Python ](https://www.fullstackpython.com/ )
2013-08-06 04:54:50 +04:00
### Dead Tree
* [Programming Python ](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20 )
* [Dive Into Python ](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20 )
* [Python Essential Reference ](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20 )