mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-25 00:06:47 +03:00
440 lines
12 KiB
Markdown
440 lines
12 KiB
Markdown
|
---
|
||
|
linguagem: haskell
|
||
|
tradutor/contribuidor:
|
||
|
- ["Lucas Tonussi", "http://www.inf.ufsc.br/~tonussi/"]
|
||
|
---
|
||
|
|
||
|
As linguagens funcionais são linguagens de programação com base em avaliação
|
||
|
de funções matemáticas (expressões), evitando-se o conceito de mudança de
|
||
|
estado com alteração de dados. Neste aspecto, este paradigma é oposto ao
|
||
|
paradigma imperativo que se baseia em alterações de estados.
|
||
|
|
||
|
A programação funcional começou no cálculo lambda, que foi base teórica para
|
||
|
o desenvolvimento deste paradigma de programação.
|
||
|
|
||
|
|
||
|
```haskell
|
||
|
-- Para comentar a linha basta dois traços seguidos.
|
||
|
|
||
|
{- Abre chaves traço e traço fecha chaves cria um campo
|
||
|
para comentário em múltiplas linhas.
|
||
|
-}
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 1. Tipos Primitivos de Dados e Operadores
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- Numerais
|
||
|
|
||
|
0 -- 3
|
||
|
1 -- 1
|
||
|
2 -- 2 ...
|
||
|
|
||
|
-- Alguns Operadores Fundamentais
|
||
|
|
||
|
7 + 7 -- 7 mais 7
|
||
|
7 - 7 -- 7 menos 7
|
||
|
7 * 7 -- 7 vezes 7
|
||
|
7 / 7 -- 7 dividido por 7
|
||
|
|
||
|
-- Divisões não são inteiras, são fracionádas por padrão da linguagem
|
||
|
28736 / 82374 -- 0.3488479374559934
|
||
|
|
||
|
|
||
|
-- Divisão inteira
|
||
|
82374 `div` 28736 -- 2
|
||
|
|
||
|
-- Divisão modular
|
||
|
82374 `mod` 28736 -- 24902
|
||
|
|
||
|
-- Booleanos como tipo primitivo de dado
|
||
|
True -- Verdadeiro
|
||
|
False -- Falso
|
||
|
|
||
|
-- Operadores unitário
|
||
|
not True -- Nega uma verdade
|
||
|
not False -- Nega uma falácia
|
||
|
|
||
|
|
||
|
-- Operadores binários
|
||
|
7 == 7 -- 7 é igual a 7 ?
|
||
|
7 /= 7 -- 7 é diferente de 7 ?
|
||
|
7 < 7 -- 7 é menor que 7 ?
|
||
|
7 > 7 -- 7 é maior que 7 ?
|
||
|
|
||
|
|
||
|
{- Haskell é uma linguagem que tem uma sintáxe bastante familiar na
|
||
|
matemática, por exemplo em chamadas de funções você tem:
|
||
|
|
||
|
NomeFunção ArgumentoA ArgumentoB ArgumentoC ...
|
||
|
-}
|
||
|
|
||
|
-- Strings e Caractéres
|
||
|
"Texto entre abre áspas e fecha áspas define uma string"
|
||
|
'a' -- Caractere
|
||
|
'A' -- Caractere
|
||
|
|
||
|
'Strings entre aspas simples sobe um erro' -- Erro léxico!
|
||
|
|
||
|
-- Concatenação de Strings
|
||
|
"StringA" ++ "StringB" -- "StringAStringB"
|
||
|
|
||
|
-- Você pode listar uma string pelos seus caractéres
|
||
|
"AbBbbcAbbcbBbcbcb" !! 0 -- 'A'
|
||
|
"AbBbbcAbbcbBbcbcb" !! 1 -- 'b'
|
||
|
"AbBbbcAbbcbBbcbcb" !! 2 -- 'B'
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- Listas e Túplas
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- A construção de uma lista precisa ser de elementos homogêneos
|
||
|
[1, 2, 3, 4, 5] -- Homogênea
|
||
|
[1, a, 2, b, 3] -- Heterogênea (Erro)
|
||
|
|
||
|
-- Haskell permite que você crie sequências
|
||
|
[1..5]
|
||
|
|
||
|
{- Haskell usa avaliação preguiçosa o que
|
||
|
Permite você ter listas "infinitas"
|
||
|
-}
|
||
|
|
||
|
-- Uma lista "infinita" cuja razão é 1
|
||
|
[1..]
|
||
|
|
||
|
-- O 777º elemento de uma lista de razão 1
|
||
|
[1..] !! 777 -- 778
|
||
|
|
||
|
-- União de listas [lista_0] ++ [lista_1] ++ [lista_i]
|
||
|
[1..5] ++ [6..10] ++ [1..4] -- [1,2,3,4,5,6,7,8,9,10,1,2,3,4]
|
||
|
|
||
|
-- Adiciona um cabeçalho a sua lista e desloca a cauda
|
||
|
0:[1..10] -- [0, 1, 2, 3, 4, 5]
|
||
|
'a':['a'..'e'] -- "aabcde"
|
||
|
|
||
|
-- Indexação em uma lista
|
||
|
[0..] !! 5 -- 5
|
||
|
|
||
|
-- Operadores de Listas usuais
|
||
|
head ['a'..'e'] -- Qual o cabeçalho da lista ?
|
||
|
tail ['a'..'e'] -- Qual a cauda da lista ?
|
||
|
init ['a'..'e'] -- Qual a lista menos o último elemento ?
|
||
|
last ['a'..'e'] -- Qual o último elemento ?
|
||
|
|
||
|
-- list comprehensions
|
||
|
[x*2 | x <- [1..5]] -- [2, 4, 6, 8, 10]
|
||
|
|
||
|
-- with a conditional
|
||
|
[x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10]
|
||
|
|
||
|
-- Every element in a tuple can be a different type, but a tuple has a
|
||
|
-- fixed length.
|
||
|
-- A tuple:
|
||
|
("haskell", 1)
|
||
|
|
||
|
-- accessing elements of a tuple
|
||
|
fst ("haskell", 1) -- "haskell"
|
||
|
snd ("haskell", 1) -- 1
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 3. Functions
|
||
|
----------------------------------------------------
|
||
|
-- A simple function that takes two variables
|
||
|
add a b = a + b
|
||
|
|
||
|
-- Note that if you are using ghci (the Haskell interpreter)
|
||
|
-- You'll need to use `let`, i.e.
|
||
|
-- let add a b = a + b
|
||
|
|
||
|
-- Using the function
|
||
|
add 1 2 -- 3
|
||
|
|
||
|
-- You can also put the function name between the two arguments
|
||
|
-- with backticks:
|
||
|
1 `add` 2 -- 3
|
||
|
|
||
|
-- You can also define functions that have no letters! This lets
|
||
|
-- you define your own operators! Here's an operator that does
|
||
|
-- integer division
|
||
|
(//) a b = a `div` b
|
||
|
35 // 4 -- 8
|
||
|
|
||
|
-- Guards: an easy way to do branching in functions
|
||
|
fib x
|
||
|
| x < 2 = x
|
||
|
| otherwise = fib (x - 1) + fib (x - 2)
|
||
|
|
||
|
-- Pattern matching is similar. Here we have given three different
|
||
|
-- definitions for fib. Haskell will automatically call the first
|
||
|
-- function that matches the pattern of the value.
|
||
|
fib 1 = 1
|
||
|
fib 2 = 2
|
||
|
fib x = fib (x - 1) + fib (x - 2)
|
||
|
|
||
|
-- Pattern matching on tuples:
|
||
|
foo (x, y) = (x + 1, y + 2)
|
||
|
|
||
|
-- Pattern matching on lists. Here `x` is the first element
|
||
|
-- in the list, and `xs` is the rest of the list. We can write
|
||
|
-- our own map function:
|
||
|
myMap func [] = []
|
||
|
myMap func (x:xs) = func x:(myMap func xs)
|
||
|
|
||
|
-- Anonymous functions are created with a backslash followed by
|
||
|
-- all the arguments.
|
||
|
myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
|
||
|
|
||
|
-- using fold (called `inject` in some languages) with an anonymous
|
||
|
-- function. foldl1 means fold left, and use the first value in the
|
||
|
-- list as the initial value for the accumulator.
|
||
|
foldl1 (\acc x -> acc + x) [1..5] -- 15
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 4. More functions
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- currying: if you don't pass in all the arguments to a function,
|
||
|
-- it gets "curried". That means it returns a function that takes the
|
||
|
-- rest of the arguments.
|
||
|
|
||
|
add a b = a + b
|
||
|
foo = add 10 -- foo is now a function that takes a number and adds 10 to it
|
||
|
foo 5 -- 15
|
||
|
|
||
|
-- Another way to write the same thing
|
||
|
foo = (+10)
|
||
|
foo 5 -- 15
|
||
|
|
||
|
-- function composition
|
||
|
-- the (.) function chains functions together.
|
||
|
-- For example, here foo is a function that takes a value. It adds 10 to it,
|
||
|
-- multiplies the result of that by 5, and then returns the final value.
|
||
|
foo = (*5) . (+10)
|
||
|
|
||
|
-- (5 + 10) * 5 = 75
|
||
|
foo 5 -- 75
|
||
|
|
||
|
-- fixing precedence
|
||
|
-- Haskell has another function called `$`. This changes the precedence
|
||
|
-- so that everything to the left of it gets computed first and then applied
|
||
|
-- to everything on the right. You can use `.` and `$` to get rid of a lot
|
||
|
-- of parentheses:
|
||
|
|
||
|
-- before
|
||
|
(even (fib 7)) -- true
|
||
|
|
||
|
-- after
|
||
|
even . fib $ 7 -- true
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 5. Type signatures
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- Haskell has a very strong type system, and everything has a type signature.
|
||
|
|
||
|
-- Some basic types:
|
||
|
5 :: Integer
|
||
|
"hello" :: String
|
||
|
True :: Bool
|
||
|
|
||
|
-- Functions have types too.
|
||
|
-- `not` takes a boolean and returns a boolean:
|
||
|
-- not :: Bool -> Bool
|
||
|
|
||
|
-- Here's a function that takes two arguments:
|
||
|
-- add :: Integer -> Integer -> Integer
|
||
|
|
||
|
-- When you define a value, it's good practice to write its type above it:
|
||
|
double :: Integer -> Integer
|
||
|
double x = x * 2
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 6. Control Flow and If Statements
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- if statements
|
||
|
haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome"
|
||
|
|
||
|
-- if statements can be on multiple lines too, indentation is important
|
||
|
haskell = if 1 == 1
|
||
|
then "awesome"
|
||
|
else "awful"
|
||
|
|
||
|
-- case statements: Here's how you could parse command line arguments
|
||
|
case args of
|
||
|
"help" -> printHelp
|
||
|
"start" -> startProgram
|
||
|
_ -> putStrLn "bad args"
|
||
|
|
||
|
-- Haskell doesn't have loops because it uses recursion instead.
|
||
|
-- map applies a function over every element in an array
|
||
|
|
||
|
map (*2) [1..5] -- [2, 4, 6, 8, 10]
|
||
|
|
||
|
-- you can make a for function using map
|
||
|
for array func = map func array
|
||
|
|
||
|
-- and then use it
|
||
|
for [0..5] $ \i -> show i
|
||
|
|
||
|
-- we could've written that like this too:
|
||
|
for [0..5] show
|
||
|
|
||
|
-- You can use foldl or foldr to reduce a list
|
||
|
-- foldl <fn> <initial value> <list>
|
||
|
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
|
||
|
|
||
|
-- This is the same as
|
||
|
(2 * (2 * (2 * 4 + 1) + 2) + 3)
|
||
|
|
||
|
-- foldl is left-handed, foldr is right-
|
||
|
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
|
||
|
|
||
|
-- This is now the same as
|
||
|
(2 * 3 + (2 * 2 + (2 * 1 + 4)))
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 7. Data Types
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- Here's how you make your own data type in Haskell
|
||
|
|
||
|
data Color = Red | Blue | Green
|
||
|
|
||
|
-- Now you can use it in a function:
|
||
|
|
||
|
|
||
|
say :: Color -> String
|
||
|
say Red = "You are Red!"
|
||
|
say Blue = "You are Blue!"
|
||
|
say Green = "You are Green!"
|
||
|
|
||
|
-- Your data types can have parameters too:
|
||
|
|
||
|
data Maybe a = Nothing | Just a
|
||
|
|
||
|
-- These are all of type Maybe
|
||
|
Just "hello" -- of type `Maybe String`
|
||
|
Just 1 -- of type `Maybe Int`
|
||
|
Nothing -- of type `Maybe a` for any `a`
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 8. Haskell IO
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- While IO can't be explained fully without explaining monads,
|
||
|
-- it is not hard to explain enough to get going.
|
||
|
|
||
|
-- When a Haskell program is executed, the function `main` is
|
||
|
-- called. It must return a value of type `IO ()`. For example:
|
||
|
|
||
|
main :: IO ()
|
||
|
main = putStrLn $ "Hello, sky! " ++ (say Blue)
|
||
|
-- putStrLn has type String -> IO ()
|
||
|
|
||
|
-- It is easiest to do IO if you can implement your program as
|
||
|
-- a function from String to String. The function
|
||
|
-- interact :: (String -> String) -> IO ()
|
||
|
-- inputs some text, runs a function on it, and prints out the
|
||
|
-- output.
|
||
|
|
||
|
countLines :: String -> String
|
||
|
countLines = show . length . lines
|
||
|
|
||
|
main' = interact countLines
|
||
|
|
||
|
-- You can think of a value of type `IO ()` as representing a
|
||
|
-- sequence of actions for the computer to do, much like a
|
||
|
-- computer program written in an imperative language. We can use
|
||
|
-- the `do` notation to chain actions together. For example:
|
||
|
|
||
|
sayHello :: IO ()
|
||
|
sayHello = do
|
||
|
putStrLn "What is your name?"
|
||
|
name <- getLine -- this gets a line and gives it the name "name"
|
||
|
putStrLn $ "Hello, " ++ name
|
||
|
|
||
|
-- Exercise: write your own version of `interact` that only reads
|
||
|
-- one line of input.
|
||
|
|
||
|
-- The code in `sayHello` will never be executed, however. The only
|
||
|
-- action that ever gets executed is the value of `main`.
|
||
|
-- To run `sayHello` comment out the above definition of `main`
|
||
|
-- and replace it with:
|
||
|
-- main = sayHello
|
||
|
|
||
|
-- Let's understand better how the function `getLine` we just
|
||
|
-- used works. Its type is:
|
||
|
-- getLine :: IO String
|
||
|
-- You can think of a value of type `IO a` as representing a
|
||
|
-- computer program that will generate a value of type `a`
|
||
|
-- when executed (in addition to anything else it does). We can
|
||
|
-- store and reuse this value using `<-`. We can also
|
||
|
-- make our own action of type `IO String`:
|
||
|
|
||
|
action :: IO String
|
||
|
action = do
|
||
|
putStrLn "This is a line. Duh"
|
||
|
input1 <- getLine
|
||
|
input2 <- getLine
|
||
|
-- The type of the `do` statement is that of its last line.
|
||
|
-- `return` is not a keyword, but merely a function
|
||
|
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
|
||
|
|
||
|
-- We can use this just like we used `getLine`:
|
||
|
|
||
|
main'' = do
|
||
|
putStrLn "I will echo two lines!"
|
||
|
result <- action
|
||
|
putStrLn result
|
||
|
putStrLn "This was all, folks!"
|
||
|
|
||
|
-- The type `IO` is an example of a "monad". The way Haskell uses a monad to
|
||
|
-- do IO allows it to be a purely functional language. Any function that
|
||
|
-- interacts with the outside world (i.e. does IO) gets marked as `IO` in its
|
||
|
-- type signature. This lets us reason about what functions are "pure" (don't
|
||
|
-- interact with the outside world or modify state) and what functions aren't.
|
||
|
|
||
|
-- This is a powerful feature, because it's easy to run pure functions
|
||
|
-- concurrently; so, concurrency in Haskell is very easy.
|
||
|
|
||
|
|
||
|
----------------------------------------------------
|
||
|
-- 9. The Haskell REPL
|
||
|
----------------------------------------------------
|
||
|
|
||
|
-- Start the repl by typing `ghci`.
|
||
|
-- Now you can type in Haskell code. Any new values
|
||
|
-- need to be created with `let`:
|
||
|
|
||
|
let foo = 5
|
||
|
|
||
|
-- You can see the type of any value with `:t`:
|
||
|
|
||
|
>:t foo
|
||
|
foo :: Integer
|
||
|
|
||
|
-- You can also run any action of type `IO ()`
|
||
|
|
||
|
> sayHello
|
||
|
What is your name?
|
||
|
Friend!
|
||
|
Hello, Friend!
|
||
|
|
||
|
```
|
||
|
|
||
|
There's a lot more to Haskell, including typeclasses and monads. These are the big ideas that make Haskell such fun to code in. I'll leave you with one final Haskell example: an implementation of quicksort in Haskell:
|
||
|
|
||
|
```haskell
|
||
|
qsort [] = []
|
||
|
qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
|
||
|
where lesser = filter (< p) xs
|
||
|
greater = filter (>= p) xs
|
||
|
```
|
||
|
|
||
|
Haskell is easy to install. Get it [here](http://www.haskell.org/platform/).
|
||
|
|
||
|
You can find a much gentler introduction from the excellent
|
||
|
[Learn you a Haskell](http://learnyouahaskell.com/) or
|
||
|
[Real World Haskell](http://book.realworldhaskell.org/).
|