2013-06-29 04:01:58 +04:00
---
2014-10-12 23:24:52 +04:00
language: Haskell
2017-08-25 11:01:38 +03:00
filename: learnhaskell.hs
2013-07-04 09:59:13 +04:00
contributors:
- ["Adit Bhargava", "http://adit.io"]
2023-08-25 07:06:35 +03:00
- ["Stanislav Modrak", "https://stanislav.gq"]
2013-06-29 04:01:58 +04:00
---
2013-12-02 16:09:58 +04:00
Haskell was designed as a practical, purely functional programming
language. It's famous for its monads and its type system, but I keep coming back
to it because of its elegance. Haskell makes coding a real joy for me.
2013-06-29 04:01:58 +04:00
```haskell
-- Single line comments start with two dashes.
{- Multiline comments can be enclosed
2013-10-23 23:19:55 +04:00
in a block like this.
2013-06-29 04:01:58 +04:00
-}
----------------------------------------------------
-- 1. Primitive Datatypes and Operators
----------------------------------------------------
-- You have numbers
3 -- 3
-- Math is what you would expect
1 + 1 -- 2
8 - 1 -- 7
10 * 2 -- 20
35 / 5 -- 7.0
-- Division is not integer division by default
35 / 4 -- 8.75
-- integer division
35 `div` 4 -- 8
-- Boolean values are primitives
True
False
-- Boolean operations
not True -- False
not False -- True
2021-10-31 14:58:33 +03:00
True & & False -- False
True || False -- True
2013-06-29 04:01:58 +04:00
1 == 1 -- True
1 /= 1 -- False
1 < 10 -- True
2013-06-30 21:03:42 +04:00
-- In the above examples, `not` is a function that takes one value.
-- Haskell doesn't need parentheses for function calls...all the arguments
-- are just listed after the function. So the general pattern is:
-- func arg1 arg2 arg3...
-- See the section on functions for information on how to write your own.
2013-06-29 04:01:58 +04:00
-- Strings and characters
"This is a string."
'a' -- character
'You cant use single quotes for strings.' -- error!
2013-06-30 21:03:42 +04:00
-- Strings can be concatenated
2013-06-29 04:09:34 +04:00
"Hello " ++ "world!" -- "Hello world!"
2013-06-29 04:01:58 +04:00
2013-06-30 21:03:42 +04:00
-- A string is a list of characters
2015-02-02 00:39:52 +03:00
['H', 'e', 'l', 'l', 'o'] -- "Hello"
2020-10-15 22:29:37 +03:00
-- Lists can be indexed with the `!!` operator followed by an index
2013-06-29 04:09:34 +04:00
"This is a string" !! 0 -- 'T'
2013-06-29 04:01:58 +04:00
----------------------------------------------------
2017-04-01 23:19:58 +03:00
-- 2. Lists and Tuples
2013-06-29 04:01:58 +04:00
----------------------------------------------------
-- Every element in a list must have the same type.
2017-02-09 18:26:11 +03:00
-- These two lists are equal:
2013-06-29 04:01:58 +04:00
[1, 2, 3, 4, 5]
[1..5]
2015-02-01 03:40:55 +03:00
-- Ranges are versatile.
['A'..'F'] -- "ABCDEF"
-- You can create a step in a range.
[0,2..10] -- [0, 2, 4, 6, 8, 10]
2017-02-09 18:26:11 +03:00
[5..1] -- [] (Haskell defaults to incrementing)
2015-02-01 03:40:55 +03:00
[5,4..1] -- [5, 4, 3, 2, 1]
2015-03-01 22:16:29 +03:00
-- indexing into a list
2017-02-09 18:26:11 +03:00
[1..10] !! 3 -- 4 (zero-based indexing)
2015-03-01 22:16:29 +03:00
2013-06-29 04:01:58 +04:00
-- You can also have infinite lists in Haskell!
[1..] -- a list of all the natural numbers
2013-06-30 21:03:42 +04:00
-- Infinite lists work because Haskell has "lazy evaluation". This means
-- that Haskell only evaluates things when it needs to. So you can ask for
-- the 1000th element of your list and Haskell will give it to you:
[1..] !! 999 -- 1000
-- And now Haskell has evaluated elements 1 - 1000 of this list...but the
-- rest of the elements of this "infinite" list don't exist yet! Haskell won't
-- actually evaluate them until it needs to.
2013-08-12 19:17:37 +04:00
-- joining two lists
2013-06-29 04:01:58 +04:00
[1..5] ++ [6..10]
-- adding to the head of a list
0:[1..5] -- [0, 1, 2, 3, 4, 5]
-- more list operations
head [1..5] -- 1
tail [1..5] -- [2, 3, 4, 5]
init [1..5] -- [1, 2, 3, 4]
last [1..5] -- 5
-- list comprehensions
[x*2 | x < - [ 1 . . 5 ] ] -- [ 2 , 4 , 6 , 8 , 10 ]
-- with a conditional
2013-06-29 04:09:34 +04:00
[x*2 | x < - [ 1 . . 5 ] , x * 2 > 4] -- [6, 8, 10]
2013-06-29 04:01:58 +04:00
2013-06-29 07:53:43 +04:00
-- Every element in a tuple can be a different type, but a tuple has a
-- fixed length.
2013-06-29 04:01:58 +04:00
-- A tuple:
("haskell", 1)
2014-11-21 20:28:38 +03:00
-- accessing elements of a pair (i.e. a tuple of length 2)
2013-06-29 04:01:58 +04:00
fst ("haskell", 1) -- "haskell"
snd ("haskell", 1) -- 1
2018-07-11 01:12:23 +03:00
-- pair element accessing does not work on n-tuples (i.e. triple, quadruple, etc)
2018-07-11 01:34:42 +03:00
snd ("snd", "can't touch this", "da na na na") -- error! see function below
2018-07-11 01:12:23 +03:00
2013-06-29 04:01:58 +04:00
----------------------------------------------------
-- 3. Functions
----------------------------------------------------
-- A simple function that takes two variables
add a b = a + b
2013-06-30 01:17:52 +04:00
-- Note that if you are using ghci (the Haskell interpreter)
-- You'll need to use `let` , i.e.
-- let add a b = a + b
2013-06-29 04:01:58 +04:00
-- Using the function
add 1 2 -- 3
2013-06-29 07:53:43 +04:00
-- You can also put the function name between the two arguments
-- with backticks:
2013-06-29 04:01:58 +04:00
1 `add` 2 -- 3
2013-08-08 23:05:01 +04:00
-- You can also define functions that have no letters! This lets
2013-06-29 07:53:43 +04:00
-- you define your own operators! Here's an operator that does
-- integer division
2013-06-29 04:01:58 +04:00
(//) a b = a `div` b
35 // 4 -- 8
-- Guards: an easy way to do branching in functions
fib x
2015-03-16 23:07:19 +03:00
| x < 2 = 1
2013-06-29 04:01:58 +04:00
| otherwise = fib (x - 1) + fib (x - 2)
2013-06-29 04:09:34 +04:00
-- Pattern matching is similar. Here we have given three different
2017-02-09 18:27:29 +03:00
-- equations that define fib. Haskell will automatically use the first
2017-02-09 18:26:11 +03:00
-- equation whose left hand side pattern matches the value.
2013-06-29 04:01:58 +04:00
fib 1 = 1
fib 2 = 2
fib x = fib (x - 1) + fib (x - 2)
2018-07-11 01:15:26 +03:00
-- Pattern matching on tuples
2018-07-11 01:34:42 +03:00
sndOfTriple (_, y, _) = y -- use a wild card (_ ) to bypass naming unused value
2013-06-29 04:01:58 +04:00
2013-07-01 19:33:25 +04:00
-- Pattern matching on lists. Here `x` is the first element
-- in the list, and `xs` is the rest of the list. We can write
2013-06-29 04:09:34 +04:00
-- our own map function:
2013-07-01 19:33:25 +04:00
myMap func [] = []
2013-06-30 21:03:42 +04:00
myMap func (x:xs) = func x:(myMap func xs)
2013-06-29 04:01:58 +04:00
2013-06-29 07:53:43 +04:00
-- Anonymous functions are created with a backslash followed by
-- all the arguments.
2013-06-30 21:03:42 +04:00
myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
2013-06-29 04:01:58 +04:00
2013-06-29 07:53:43 +04:00
-- using fold (called `inject` in some languages) with an anonymous
-- function. foldl1 means fold left, and use the first value in the
2013-07-01 19:33:25 +04:00
-- list as the initial value for the accumulator.
2013-06-29 04:01:58 +04:00
foldl1 (\acc x -> acc + x) [1..5] -- 15
----------------------------------------------------
2013-06-29 04:09:34 +04:00
-- 4. More functions
2013-06-29 04:01:58 +04:00
----------------------------------------------------
2014-10-22 02:30:30 +04:00
-- partial application: if you don't pass in all the arguments to a function,
2015-03-16 23:07:19 +03:00
-- it gets "partially applied". That means it returns a function that takes the
2013-06-29 04:09:34 +04:00
-- rest of the arguments.
2013-06-29 04:01:58 +04:00
add a b = a + b
foo = add 10 -- foo is now a function that takes a number and adds 10 to it
foo 5 -- 15
-- Another way to write the same thing
2015-10-24 00:31:10 +03:00
foo = (10+)
2013-06-29 04:01:58 +04:00
foo 5 -- 15
-- function composition
2015-10-31 15:37:13 +03:00
-- the operator `.` chains functions together.
2013-06-29 04:09:34 +04:00
-- For example, here foo is a function that takes a value. It adds 10 to it,
2015-10-20 22:05:16 +03:00
-- multiplies the result of that by 4, and then returns the final value.
2015-10-24 00:31:10 +03:00
foo = (4*) . (10+)
2013-06-29 04:01:58 +04:00
2017-02-09 18:27:29 +03:00
-- 4*(10+5) = 60
2015-10-20 22:05:16 +03:00
foo 5 -- 60
2013-06-29 04:01:58 +04:00
-- fixing precedence
2018-07-11 01:12:23 +03:00
-- Haskell has an operator called `$` . This operator applies a function
-- to a given parameter. In contrast to standard function application, which
-- has highest possible priority of 10 and is left-associative, the `$` operator
2015-03-27 16:25:33 +03:00
-- has priority of 0 and is right-associative. Such a low priority means that
2018-08-02 07:12:35 +03:00
-- the expression on its right is applied as a parameter to the function on its left.
2013-06-29 04:01:58 +04:00
-- before
2015-07-06 11:40:05 +03:00
even (fib 7) -- false
2013-06-29 04:01:58 +04:00
2014-11-21 20:28:38 +03:00
-- equivalently
2015-03-16 22:24:21 +03:00
even $ fib 7 -- false
2014-11-21 20:28:38 +03:00
2015-07-06 11:40:05 +03:00
-- composing functions
even . fib $ 7 -- false
2013-06-29 04:01:58 +04:00
----------------------------------------------------
-- 5. Type signatures
----------------------------------------------------
2018-07-11 01:12:23 +03:00
-- Haskell has a very strong type system, and every valid expression has a type.
2013-06-29 04:01:58 +04:00
2013-06-29 04:09:34 +04:00
-- Some basic types:
2013-06-29 04:01:58 +04:00
5 :: Integer
"hello" :: String
True :: Bool
2013-06-29 04:09:34 +04:00
-- Functions have types too.
-- `not` takes a boolean and returns a boolean:
2013-06-30 21:03:42 +04:00
-- not :: Bool -> Bool
2013-06-29 04:01:58 +04:00
2013-06-29 04:09:34 +04:00
-- Here's a function that takes two arguments:
2013-06-30 21:03:42 +04:00
-- add :: Integer -> Integer -> Integer
2013-07-01 19:50:25 +04:00
-- When you define a value, it's good practice to write its type above it:
2013-06-30 21:03:42 +04:00
double :: Integer -> Integer
double x = x * 2
2013-06-29 04:01:58 +04:00
----------------------------------------------------
2014-11-21 20:28:38 +03:00
-- 6. Control Flow and If Expressions
2013-06-29 04:01:58 +04:00
----------------------------------------------------
2017-02-09 18:26:11 +03:00
-- if-expressions
2013-06-29 04:01:58 +04:00
haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome"
2017-02-09 18:26:11 +03:00
-- if-expressions can be on multiple lines too, indentation is important
2013-06-29 04:01:58 +04:00
haskell = if 1 == 1
then "awesome"
else "awful"
2014-11-21 20:28:38 +03:00
-- case expressions: Here's how you could parse command line arguments
2013-06-29 04:01:58 +04:00
case args of
"help" -> printHelp
"start" -> startProgram
_ -> putStrLn "bad args"
2014-11-21 20:28:38 +03:00
-- Haskell doesn't have loops; it uses recursion instead.
2015-10-24 00:31:10 +03:00
-- map applies a function over every element in a list
2013-06-29 04:01:58 +04:00
map (*2) [1..5] -- [2, 4, 6, 8, 10]
-- you can make a for function using map
for array func = map func array
-- and then use it
2013-06-29 04:09:34 +04:00
for [0..5] $ \i -> show i
2013-06-29 04:01:58 +04:00
2013-06-29 04:09:34 +04:00
-- we could've written that like this too:
for [0..5] show
2013-06-29 04:01:58 +04:00
2013-07-02 22:00:30 +04:00
-- You can use foldl or foldr to reduce a list
-- foldl < fn > < initial value > < list >
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
-- This is the same as
(2 * (2 * (2 * 4 + 1) + 2) + 3)
2015-10-24 00:31:10 +03:00
-- foldl is left-handed, foldr is right-handed
2013-07-02 22:00:30 +04:00
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
-- This is now the same as
2015-04-27 11:16:16 +03:00
(2 * 1 + (2 * 2 + (2 * 3 + 4)))
2013-07-02 22:00:30 +04:00
2013-06-29 04:01:58 +04:00
----------------------------------------------------
-- 7. Data Types
----------------------------------------------------
2019-11-04 19:51:48 +03:00
-- A data type is declared with a 'type constructor' on the left
-- and one or more 'data constructors' on the right, separated by
-- the pipe | symbol. This is a sum/union type. Each data constructor
-- is a (possibly nullary) function that creates an object of the type
-- named by the type constructor.
-- This is essentially an enum
2013-06-29 04:01:58 +04:00
data Color = Red | Blue | Green
2013-06-29 04:09:34 +04:00
-- Now you can use it in a function:
2013-06-29 04:01:58 +04:00
2013-07-04 09:52:48 +04:00
say :: Color -> String
2017-02-09 18:26:11 +03:00
say Red = "You are Red!"
say Blue = "You are Blue!"
say Green = "You are Green!"
2013-06-29 04:01:58 +04:00
2019-11-04 19:51:48 +03:00
-- Note that the type constructor is used in the type signature
-- and the data constructors are used in the body of the function
-- Data constructors are primarily pattern-matched against
-- This next one is a traditional container type holding two fields
-- In a type declaration, data constructors take types as parameters
-- Data constructors can have the same name as type constructors
-- This is common where the type only has a single data constructor
data Point = Point Float Float
-- This can be used in a function like:
distance :: Point -> Point -> Float
distance (Point x y) (Point x' y') = sqrt $ dx + dy
where dx = (x - x') ** 2
dy = (y - y') ** 2
-- Types can have multiple data constructors with arguments, too
2019-11-04 20:05:21 +03:00
data Name = Mononym String
| FirstLastName String String
| FullName String String String
2019-11-04 19:51:48 +03:00
-- To make things clearer we can use record syntax
2019-11-04 20:05:21 +03:00
data Point2D = CartesianPoint2D { x :: Float, y :: Float }
| PolarPoint2D { r :: Float, theta :: Float }
2019-11-04 19:51:48 +03:00
myPoint = CartesianPoint2D { x = 7.0, y = 10.0 }
2019-11-04 20:05:21 +03:00
-- Using record syntax automatically creates accessor functions
-- (the name of the field)
2019-11-04 19:51:48 +03:00
xOfMyPoint = x myPoint
-- xOfMyPoint is equal to 7.0
-- Record syntax also allows a simple form of update
myPoint' = myPoint { x = 9.0 }
-- myPoint' is CartesianPoint2D { x = 9.0, y = 10.0 }
-- Even if a type is defined with record syntax, it can be declared like
-- a simple data constructor. This is fine:
myPoint'2 = CartesianPoint2D 3.3 4.0
-- It's also useful to pattern match data constructors in `case` expressions
2019-11-04 20:05:21 +03:00
distanceFromOrigin x =
case x of (CartesianPoint2D x y) -> sqrt $ x ** 2 + y ** 2
(PolarPoint2D r _) -> r
2019-11-04 19:51:48 +03:00
-- Your data types can have type parameters too:
2013-06-29 04:01:58 +04:00
data Maybe a = Nothing | Just a
-- These are all of type Maybe
2013-07-04 10:12:53 +04:00
Just "hello" -- of type `Maybe String`
Just 1 -- of type `Maybe Int`
Nothing -- of type `Maybe a` for any `a`
2013-06-29 04:01:58 +04:00
2019-11-04 19:51:48 +03:00
-- For convenience we can also create type synonyms with the 'type' keyword
type String = [Char]
-- Unlike `data` types, type synonyms need no constructor, and can be used
-- anywhere a synonymous data type could be used. Say we have the
-- following type synonyms and items with the following type signatures
type Weight = Float
type Height = Float
type Point = (Float, Float)
getMyHeightAndWeight :: Person -> (Height, Weight)
findCenter :: Circle -> Point
somePerson :: Person
someCircle :: Circle
distance :: Point -> Point -> Float
2019-11-04 20:05:21 +03:00
-- The following would compile and run without issue,
-- even though it does not make sense semantically,
-- because the type synonyms reduce to the same base types
2019-11-04 19:51:48 +03:00
distance (getMyHeightAndWeight somePerson) (findCenter someCircle)
----------------------------------------------------
-- 8. Typeclasses
----------------------------------------------------
-- Typeclasses are one way Haskell does polymorphism
-- They are similar to interfaces in other languages
2019-11-04 20:05:21 +03:00
-- A typeclass defines a set of functions that must
-- work on any type that is in that typeclass.
2019-11-04 19:51:48 +03:00
2019-11-04 20:05:21 +03:00
-- The Eq typeclass is for types whose instances can
-- be tested for equality with one another.
2019-11-04 19:51:48 +03:00
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
-- This defines a typeclass that requires two functions, (==) and (/=)
-- It also declares that one function can be declared in terms of another
-- So it is enough that *either* the (==) function or the (/=) is defined
-- And the other will be 'filled in' based on the typeclass definition
-- To make a type a member of a type class, the instance keyword is used
instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
_ == _ = False
-- Now we can use (==) and (/=) with TrafficLight objects
canProceedThrough :: TrafficLight -> Bool
canProceedThrough t = t /= Red
-- You can NOT create an instance definition for a type synonym
2019-11-04 20:05:21 +03:00
-- Functions can be written to take typeclasses with type parameters,
-- rather than types, assuming that the function only relies on
-- features of the typeclass
2019-11-04 19:51:48 +03:00
2024-07-18 12:45:11 +03:00
isEqual :: (Eq a) => a -> a -> Bool
2019-11-04 19:51:48 +03:00
isEqual x y = x == y
2019-11-04 20:05:21 +03:00
-- Note that x and y MUST be the same type, as they are both defined
-- as being of type parameter 'a'.
-- A typeclass does not state that different types in the typeclass can
-- be mixed together.
-- So `isEqual Red 2` is invalid, even though 2 is an Int which is an
-- instance of Eq, and Red is a TrafficLight which is also an instance of Eq
2019-11-04 19:51:48 +03:00
-- Other common typeclasses are:
-- Ord for types that can be ordered, allowing you to use >, < =, etc.
-- Read for types that can be created from a string representation
-- Show for types that can be converted to a string for display
2019-11-04 20:05:21 +03:00
-- Num, Real, Integral, Fractional for types that can do math
2019-11-04 19:51:48 +03:00
-- Enum for types that can be stepped through
-- Bounded for types with a maximum and minimum
2019-11-04 20:05:21 +03:00
-- Haskell can automatically make types part of Eq, Ord, Read, Show, Enum,
-- and Bounded with the `deriving` keyword at the end of the type declaration
2019-11-04 19:51:48 +03:00
data Point = Point Float Float deriving (Eq, Read, Show)
-- In this case it is NOT necessary to create an 'instance' definition
2013-06-29 04:01:58 +04:00
----------------------------------------------------
2019-11-04 19:51:48 +03:00
-- 9. Haskell IO
2013-06-30 02:10:47 +04:00
----------------------------------------------------
2013-06-30 21:03:42 +04:00
-- While IO can't be explained fully without explaining monads,
-- it is not hard to explain enough to get going.
2013-06-30 02:10:47 +04:00
2014-02-04 03:09:52 +04:00
-- When a Haskell program is executed, `main` is
2015-10-24 00:31:10 +03:00
-- called. It must return a value of type `IO a` for some type `a` . For example:
2013-07-04 09:52:48 +04:00
main :: IO ()
2015-03-16 23:07:19 +03:00
main = putStrLn $ "Hello, sky! " ++ (say Blue)
2013-07-04 09:52:48 +04:00
-- putStrLn has type String -> IO ()
2015-03-16 23:07:19 +03:00
-- It is easiest to do IO if you can implement your program as
-- a function from String to String. The function
2013-07-04 09:52:48 +04:00
-- interact :: (String -> String) -> IO ()
2015-03-16 23:07:19 +03:00
-- inputs some text, runs a function on it, and prints out the
2013-07-04 09:52:48 +04:00
-- output.
countLines :: String -> String
countLines = show . length . lines
main' = interact countLines
-- You can think of a value of type `IO ()` as representing a
-- sequence of actions for the computer to do, much like a
-- computer program written in an imperative language. We can use
-- the `do` notation to chain actions together. For example:
sayHello :: IO ()
2015-03-16 23:07:19 +03:00
sayHello = do
2013-07-04 09:52:48 +04:00
putStrLn "What is your name?"
2013-09-20 09:25:36 +04:00
name < - getLine -- this gets a line and gives it the name " name "
2013-07-04 09:52:48 +04:00
putStrLn $ "Hello, " ++ name
2015-03-16 23:07:19 +03:00
2013-07-04 09:52:48 +04:00
-- Exercise: write your own version of `interact` that only reads
-- one line of input.
2015-03-16 23:07:19 +03:00
2013-07-04 09:52:48 +04:00
-- The code in `sayHello` will never be executed, however. The only
2015-03-16 23:07:19 +03:00
-- action that ever gets executed is the value of `main` .
-- To run `sayHello` comment out the above definition of `main`
2013-07-04 09:52:48 +04:00
-- and replace it with:
-- main = sayHello
2015-03-16 23:07:19 +03:00
-- Let's understand better how the function `getLine` we just
2013-07-04 09:52:48 +04:00
-- used works. Its type is:
-- getLine :: IO String
2013-07-04 10:12:53 +04:00
-- You can think of a value of type `IO a` as representing a
2015-03-16 23:07:19 +03:00
-- computer program that will generate a value of type `a`
2013-07-04 09:52:48 +04:00
-- when executed (in addition to anything else it does). We can
2015-10-24 00:31:10 +03:00
-- name and reuse this value using `<-` . We can also
2013-07-04 09:52:48 +04:00
-- make our own action of type `IO String` :
2013-06-30 21:03:42 +04:00
action :: IO String
2013-06-30 02:10:47 +04:00
action = do
putStrLn "This is a line. Duh"
2015-03-16 23:07:19 +03:00
input1 < - getLine
2013-06-30 02:10:47 +04:00
input2 < - getLine
2013-07-04 09:52:48 +04:00
-- The type of the `do` statement is that of its last line.
2015-03-16 23:07:19 +03:00
-- `return` is not a keyword, but merely a function
2013-07-04 09:52:48 +04:00
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
2013-06-30 02:10:47 +04:00
2013-07-04 09:52:48 +04:00
-- We can use this just like we used `getLine` :
2013-06-30 02:10:47 +04:00
2013-07-04 09:52:48 +04:00
main'' = do
putStrLn "I will echo two lines!"
2015-03-16 23:07:19 +03:00
result < - action
2013-06-30 02:10:47 +04:00
putStrLn result
putStrLn "This was all, folks!"
2013-06-30 21:03:42 +04:00
2013-07-04 10:01:47 +04:00
-- The type `IO` is an example of a "monad". The way Haskell uses a monad to
-- do IO allows it to be a purely functional language. Any function that
-- interacts with the outside world (i.e. does IO) gets marked as `IO` in its
2017-02-09 18:26:11 +03:00
-- type signature. This lets us reason about which functions are "pure" (don't
-- interact with the outside world or modify state) and which functions aren't.
2013-07-04 10:01:47 +04:00
-- This is a powerful feature, because it's easy to run pure functions
-- concurrently; so, concurrency in Haskell is very easy.
2013-06-30 02:10:47 +04:00
----------------------------------------------------
2019-11-04 19:51:48 +03:00
-- 10. The Haskell REPL
2013-06-29 04:01:58 +04:00
----------------------------------------------------
-- Start the repl by typing `ghci` .
-- Now you can type in Haskell code. Any new values
-- need to be created with `let` :
let foo = 5
2015-10-31 15:37:13 +03:00
-- You can see the type of any value or expression with `:t` :
2013-06-29 04:01:58 +04:00
2015-10-31 15:37:13 +03:00
> :t foo
2013-06-29 04:01:58 +04:00
foo :: Integer
2013-07-04 09:52:48 +04:00
2015-10-31 15:37:13 +03:00
-- Operators, such as `+` , `:` and `$` , are functions.
-- Their type can be inspected by putting the operator in parentheses:
> :t (:)
(:) :: a -> [a] -> [a]
-- You can get additional information on any `name` using `:i` :
> :i (+)
class Num a where
(+) :: a -> a -> a
...
-- Defined in ‘ GHC.Num’
infixl 6 +
2013-07-04 09:52:48 +04:00
-- You can also run any action of type `IO ()`
> sayHello
What is your name?
Friend!
Hello, Friend!
2013-06-29 04:01:58 +04:00
```
2013-12-02 16:09:58 +04:00
There's a lot more to Haskell, including typeclasses and monads. These are the
big ideas that make Haskell such fun to code in. I'll leave you with one final
2015-10-24 00:31:10 +03:00
Haskell example: an implementation of a quicksort variant in Haskell:
2013-06-29 04:01:58 +04:00
```haskell
qsort [] = []
qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
where lesser = filter (< p ) xs
greater = filter (>= p) xs
```
2013-06-29 04:09:34 +04:00
2015-12-04 01:27:24 +03:00
There are two popular ways to install Haskell: The traditional [Cabal-based installation ](http://www.haskell.org/platform/ ), and the newer [Stack-based process ](https://www.stackage.org/install ).
2013-06-29 07:53:43 +04:00
2013-07-09 18:42:37 +04:00
You can find a much gentler introduction from the excellent
2023-08-25 07:06:35 +03:00
[Learn you a Haskell ](http://learnyouahaskell.com/ ) (or [up-to-date community version ](https://learnyouahaskell.github.io/ )),
2017-09-10 22:26:33 +03:00
[Happy Learn Haskell Tutorial ](http://www.happylearnhaskelltutorial.com/ ) or
2013-07-09 18:42:37 +04:00
[Real World Haskell ](http://book.realworldhaskell.org/ ).