2013-08-25 09:32:33 +04:00
|
|
|
---
|
|
|
|
language: Matlab
|
|
|
|
contributors:
|
|
|
|
- ["mendozao", "http://github.com/mendozao"]
|
2013-09-15 01:17:41 +04:00
|
|
|
- ["jamesscottbrown", "http://jamesscottbrown.com"]
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
---
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
MATLAB stands for MATrix LABoratory. It is a powerful numerical computing language commonly used in engineering and mathematics.
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
If you have any feedback please feel free to reach me at
|
|
|
|
[@the_ozzinator](https://twitter.com/the_ozzinator), or
|
|
|
|
[osvaldo.t.mendoza@gmail.com](mailto:osvaldo.t.mendoza@gmail.com).
|
|
|
|
|
2013-09-09 09:52:09 +04:00
|
|
|
```matlab
|
2013-08-25 09:32:33 +04:00
|
|
|
% Comments start with a percent sign.
|
|
|
|
|
2014-10-30 06:07:40 +03:00
|
|
|
%{
|
|
|
|
Multi line comments look
|
2013-08-25 09:32:33 +04:00
|
|
|
something
|
|
|
|
like
|
2014-10-30 06:07:40 +03:00
|
|
|
this
|
|
|
|
%}
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% commands can span multiple lines, using '...':
|
|
|
|
a = 1 + 2 + ...
|
|
|
|
+ 4
|
|
|
|
|
|
|
|
% commands can be passed to the operating system
|
|
|
|
!ping google.com
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
who % Displays all variables in memory
|
|
|
|
whos % Displays all variables in memory, with their types
|
2013-08-25 09:32:33 +04:00
|
|
|
clear % Erases all your variables from memory
|
2013-09-15 04:41:27 +04:00
|
|
|
clear('A') % Erases a particular variable
|
2013-09-15 01:17:41 +04:00
|
|
|
openvar('A') % Open variable in variable editor
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
clc % Erases the writing on your Command Window
|
2013-09-15 01:17:41 +04:00
|
|
|
diary % Toggle writing Command Window text to file
|
2013-08-25 09:32:33 +04:00
|
|
|
ctrl-c % Abort current computation
|
|
|
|
|
2013-09-18 21:05:29 +04:00
|
|
|
edit('myfunction.m') % Open function/script in editor
|
|
|
|
type('myfunction.m') % Print the source of function/script to Command Window
|
2013-09-15 01:17:41 +04:00
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
profile on % turns on the code profiler
|
2015-07-16 18:43:13 +03:00
|
|
|
profile off % turns off the code profiler
|
2014-10-27 23:52:14 +03:00
|
|
|
profile viewer % Open profiler
|
2013-09-15 01:17:41 +04:00
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
help command % Displays documentation for command in Command Window
|
|
|
|
doc command % Displays documentation for command in Help Window
|
2014-10-28 16:56:18 +03:00
|
|
|
lookfor command % Searches for command in the first commented line of all functions
|
|
|
|
lookfor command -all % searches for command in all functions
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
|
|
|
|
% Output formatting
|
2014-10-27 23:52:14 +03:00
|
|
|
format short % 4 decimals in a floating number
|
|
|
|
format long % 15 decimals
|
|
|
|
format bank % only two digits after decimal point - for financial calculations
|
|
|
|
fprintf('text') % print "text" to the screen
|
|
|
|
disp('text') % print "text" to the screen
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
% Variables & Expressions
|
2014-10-27 23:52:14 +03:00
|
|
|
myVariable = 4 % Notice Workspace pane shows newly created variable
|
2013-08-25 09:32:33 +04:00
|
|
|
myVariable = 4; % Semi colon suppresses output to the Command Window
|
2014-10-27 23:52:14 +03:00
|
|
|
4 + 6 % ans = 10
|
|
|
|
8 * myVariable % ans = 32
|
|
|
|
2 ^ 3 % ans = 8
|
2013-08-25 09:32:33 +04:00
|
|
|
a = 2; b = 3;
|
|
|
|
c = exp(a)*sin(pi/2) % c = 7.3891
|
|
|
|
|
2013-09-18 21:05:29 +04:00
|
|
|
% Calling functions can be done in either of two ways:
|
|
|
|
% Standard function syntax:
|
2014-10-27 23:52:14 +03:00
|
|
|
load('myFile.mat', 'y') % arguments within parantheses, spererated by commas
|
2013-09-18 21:05:29 +04:00
|
|
|
% Command syntax:
|
2014-10-27 23:52:14 +03:00
|
|
|
load myFile.mat y % no parentheses, and spaces instead of commas
|
2013-09-18 21:05:29 +04:00
|
|
|
% Note the lack of quote marks in command form: inputs are always passed as
|
2013-09-18 21:08:31 +04:00
|
|
|
% literal text - cannot pass variable values. Also, can't receive output:
|
2014-10-27 23:52:14 +03:00
|
|
|
[V,D] = eig(A); % this has no equivalent in command form
|
|
|
|
[~,D] = eig(A); % if you only want D and not V
|
2013-09-18 21:05:29 +04:00
|
|
|
|
|
|
|
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
% Logicals
|
|
|
|
1 > 5 % ans = 0
|
|
|
|
10 >= 10 % ans = 1
|
|
|
|
3 ~= 4 % Not equal to -> ans = 1
|
|
|
|
3 == 3 % equal to -> ans = 1
|
|
|
|
3 > 1 && 4 > 1 % AND -> ans = 1
|
|
|
|
3 > 1 || 4 > 1 % OR -> ans = 1
|
|
|
|
~1 % NOT -> ans = 0
|
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% Logicals can be applied to matrices:
|
2013-09-15 01:17:41 +04:00
|
|
|
A > 5
|
|
|
|
% for each element, if condition is true, that element is 1 in returned matrix
|
2014-09-04 04:33:55 +04:00
|
|
|
A( A > 5 )
|
2013-09-15 01:17:41 +04:00
|
|
|
% returns a vector containing the elements in A for which condition is true
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
% Strings
|
|
|
|
a = 'MyString'
|
|
|
|
length(a) % ans = 8
|
|
|
|
a(2) % ans = y
|
|
|
|
[a,a] % ans = MyStringMyString
|
|
|
|
|
|
|
|
|
|
|
|
% Cells
|
|
|
|
a = {'one', 'two', 'three'}
|
|
|
|
a(1) % ans = 'one' - returns a cell
|
|
|
|
char(a(1)) % ans = one - returns a string
|
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
% Structures
|
|
|
|
A.b = {'one','two'};
|
|
|
|
A.c = [1 2];
|
|
|
|
A.d.e = false;
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
% Vectors
|
|
|
|
x = [4 32 53 7 1]
|
|
|
|
x(2) % ans = 32, indices in Matlab start 1, not 0
|
|
|
|
x(2:3) % ans = 32 53
|
|
|
|
x(2:end) % ans = 32 53 7 1
|
|
|
|
|
|
|
|
x = [4; 32; 53; 7; 1] % Column vector
|
|
|
|
|
|
|
|
x = [1:10] % x = 1 2 3 4 5 6 7 8 9 10
|
|
|
|
|
|
|
|
% Matrices
|
|
|
|
A = [1 2 3; 4 5 6; 7 8 9]
|
2013-09-15 01:17:41 +04:00
|
|
|
% Rows are separated by a semicolon; elements are separated with space or comma
|
2013-08-25 09:32:33 +04:00
|
|
|
% A =
|
|
|
|
|
|
|
|
% 1 2 3
|
|
|
|
% 4 5 6
|
|
|
|
% 7 8 9
|
|
|
|
|
|
|
|
A(2,3) % ans = 6, A(row, column)
|
2013-09-15 01:17:41 +04:00
|
|
|
A(6) % ans = 8
|
|
|
|
% (implicitly concatenates columns into vector, then indexes into that)
|
|
|
|
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
A(2,3) = 42 % Update row 2 col 3 with 42
|
|
|
|
% A =
|
|
|
|
|
|
|
|
% 1 2 3
|
|
|
|
% 4 5 42
|
|
|
|
% 7 8 9
|
|
|
|
|
|
|
|
A(2:3,2:3) % Creates a new matrix from the old one
|
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 5 42
|
|
|
|
% 8 9
|
|
|
|
|
|
|
|
A(:,1) % All rows in column 1
|
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 1
|
|
|
|
% 4
|
|
|
|
% 7
|
|
|
|
|
|
|
|
A(1,:) % All columns in row 1
|
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 1 2 3
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
[A ; A] % Concatenation of matrices (vertically)
|
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 1 2 3
|
|
|
|
% 4 5 42
|
|
|
|
% 7 8 9
|
|
|
|
% 1 2 3
|
|
|
|
% 4 5 42
|
|
|
|
% 7 8 9
|
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
% this is the same as
|
|
|
|
vertcat(A,A);
|
|
|
|
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
[A , A] % Concatenation of matrices (horizontally)
|
|
|
|
|
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 1 2 3 1 2 3
|
|
|
|
% 4 5 42 4 5 42
|
|
|
|
% 7 8 9 7 8 9
|
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
% this is the same as
|
|
|
|
horzcat(A,A);
|
2013-09-15 01:17:41 +04:00
|
|
|
|
|
|
|
|
|
|
|
A(:, [3 1 2]) % Rearrange the columns of original matrix
|
2013-08-25 09:32:33 +04:00
|
|
|
%ans =
|
|
|
|
|
|
|
|
% 3 1 2
|
|
|
|
% 42 4 5
|
|
|
|
% 9 7 8
|
|
|
|
|
|
|
|
size(A) % ans = 3 3
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
A(1, :) =[] % Delete the first row of the matrix
|
2014-10-27 23:52:14 +03:00
|
|
|
A(:, 1) =[] % Delete the first column of the matrix
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2014-10-27 23:52:14 +03:00
|
|
|
transpose(A) % Transpose the matrix, which is the same as:
|
2014-11-18 13:19:11 +03:00
|
|
|
A one
|
2014-04-07 06:46:58 +04:00
|
|
|
ctranspose(A) % Hermitian transpose the matrix
|
2013-09-15 01:17:41 +04:00
|
|
|
% (the transpose, followed by taking complex conjugate of each element)
|
2014-10-27 23:52:14 +03:00
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Element by Element Arithmetic vs. Matrix Arithmetic
|
2013-09-15 04:41:27 +04:00
|
|
|
% On their own, the arithmetic operators act on whole matrices. When preceded
|
|
|
|
% by a period, they act on each element instead. For example:
|
2013-08-25 09:32:33 +04:00
|
|
|
A * B % Matrix multiplication
|
|
|
|
A .* B % Multiple each element in A by its corresponding element in B
|
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% There are several pairs of functions, where one acts on each element, and
|
|
|
|
% the other (whose name ends in m) acts on the whole matrix.
|
|
|
|
exp(A) % exponentiate each element
|
|
|
|
expm(A) % calculate the matrix exponential
|
|
|
|
sqrt(A) % take the square root of each element
|
|
|
|
sqrtm(A) % find the matrix whose square is A
|
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Plotting
|
|
|
|
x = 0:.10:2*pi; % Creates a vector that starts at 0 and ends at 2*pi with increments of .1
|
|
|
|
y = sin(x);
|
2013-08-25 09:32:33 +04:00
|
|
|
plot(x,y)
|
|
|
|
xlabel('x axis')
|
|
|
|
ylabel('y axis')
|
|
|
|
title('Plot of y = sin(x)')
|
|
|
|
axis([0 2*pi -1 1]) % x range from 0 to 2*pi, y range from -1 to 1
|
2013-09-15 04:41:27 +04:00
|
|
|
|
2013-09-15 19:06:26 +04:00
|
|
|
plot(x,y1,'-',x,y2,'--',x,y3,':') % For multiple functions on one plot
|
2013-09-15 04:41:27 +04:00
|
|
|
legend('Line 1 label', 'Line 2 label') % Label curves with a legend
|
2013-09-15 01:17:41 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% Alternative method to plot multiple functions in one plot.
|
|
|
|
% while 'hold' is on, commands add to existing graph rather than replacing it
|
|
|
|
plot(x, y)
|
|
|
|
hold on
|
|
|
|
plot(x, z)
|
|
|
|
hold off
|
|
|
|
|
|
|
|
loglog(x, y) % A log-log plot
|
|
|
|
semilogx(x, y) % A plot with logarithmic x-axis
|
|
|
|
semilogy(x, y) % A plot with logarithmic y-axis
|
|
|
|
|
|
|
|
fplot (@(x) x^2, [2,5]) % plot the function x^2 from x=2 to x=5
|
|
|
|
|
|
|
|
grid on % Show grid; turn off with 'grid off'
|
2013-09-15 01:17:41 +04:00
|
|
|
axis square % Makes the current axes region square
|
|
|
|
axis equal % Set aspect ratio so data units are the same in every direction
|
|
|
|
|
|
|
|
scatter(x, y); % Scatter-plot
|
|
|
|
hist(x); % Histogram
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
z = sin(x);
|
|
|
|
plot3(x,y,z); % 3D line plot
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
pcolor(A) % Heat-map of matrix: plot as grid of rectangles, coloured by value
|
|
|
|
contour(A) % Contour plot of matrix
|
|
|
|
mesh(A) % Plot as a mesh surface
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
h = figure % Create new figure object, with handle f
|
|
|
|
figure(h) % Makes the figure corresponding to handle h the current figure
|
|
|
|
close(h) % close figure with handle h
|
|
|
|
close all % close all open figure windows
|
|
|
|
close % close current figure window
|
|
|
|
|
|
|
|
shg % bring an existing graphics window forward, or create new one if needed
|
|
|
|
clf clear % clear current figure window, and reset most figure properties
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% Properties can be set and changed through a figure handle.
|
|
|
|
% You can save a handle to a figure when you create it.
|
|
|
|
% The function gcf returns a handle to the current figure
|
|
|
|
h = plot(x, y); % you can save a handle to a figure when you create it
|
2013-09-15 01:17:41 +04:00
|
|
|
set(h, 'Color', 'r')
|
|
|
|
% 'y' yellow; 'm' magenta, 'c' cyan, 'r' red, 'g' green, 'b' blue, 'w' white, 'k' black
|
|
|
|
set(h, 'LineStyle', '--')
|
|
|
|
% '--' is solid line, '---' dashed, ':' dotted, '-.' dash-dot, 'none' is no line
|
|
|
|
get(h, 'LineStyle')
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
|
2013-09-15 05:53:32 +04:00
|
|
|
% The function gca returns a handle to the axes for the current figure
|
2013-09-15 04:41:27 +04:00
|
|
|
set(gca, 'XDir', 'reverse'); % reverse the direction of the x-axis
|
|
|
|
|
2013-09-15 05:53:32 +04:00
|
|
|
% To create a figure that contains several axes in tiled positions, use subplot
|
2013-09-15 04:41:27 +04:00
|
|
|
subplot(2,3,1); % select the first position in a 2-by-3 grid of subplots
|
|
|
|
plot(x1); title('First Plot') % plot something in this position
|
|
|
|
subplot(2,3,2); % select second position in the grid
|
|
|
|
plot(x2); title('Second Plot') % plot something there
|
|
|
|
|
|
|
|
|
|
|
|
% To use functions or scripts, they must be on your path or current directory
|
|
|
|
path % display current path
|
|
|
|
addpath /path/to/dir % add to path
|
|
|
|
rmpath /path/to/dir % remove from path
|
|
|
|
cd /path/to/move/into % change directory
|
|
|
|
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Variables can be saved to .mat files
|
|
|
|
save('myFileName.mat') % Save the variables in your Workspace
|
|
|
|
load('myFileName.mat') % Load saved variables into Workspace
|
|
|
|
|
|
|
|
% M-file Scripts
|
|
|
|
% A script file is an external file that contains a sequence of statements.
|
|
|
|
% They let you avoid repeatedly typing the same code in the Command Window
|
|
|
|
% Have .m extensions
|
|
|
|
|
|
|
|
% M-file Functions
|
|
|
|
% Like scripts, and have the same .m extension
|
|
|
|
% But can accept input arguments and return an output
|
2013-09-15 04:41:27 +04:00
|
|
|
% Also, they have their own workspace (ie. different variable scope).
|
|
|
|
% Function name should match file name (so save this example as double_input.m).
|
|
|
|
% 'help double_input.m' returns the comments under line beginning function
|
2013-08-25 09:32:33 +04:00
|
|
|
function output = double_input(x)
|
|
|
|
%double_input(x) returns twice the value of x
|
|
|
|
output = 2*x;
|
|
|
|
end
|
|
|
|
double_input(6) % ans = 12
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
|
|
|
|
% You can also have subfunctions and nested functions.
|
|
|
|
% Subfunctions are in the same file as the primary function, and can only be
|
2013-09-15 04:41:27 +04:00
|
|
|
% called by functions in the file. Nested functions are defined within another
|
2013-09-15 01:17:41 +04:00
|
|
|
% functions, and have access to both its workspace and their own workspace.
|
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% If you want to create a function without creating a new file you can use an
|
|
|
|
% anonymous function. Useful when quickly defining a function to pass to
|
|
|
|
% another function (eg. plot with fplot, evaluate an indefinite integral
|
|
|
|
% with quad, find roots with fzero, or find minimum with fminsearch).
|
|
|
|
% Example that returns the square of it's input, assigned to to the handle sqr:
|
|
|
|
sqr = @(x) x.^2;
|
|
|
|
sqr(10) % ans = 100
|
|
|
|
doc function_handle % find out more
|
2013-09-15 01:17:41 +04:00
|
|
|
|
|
|
|
% User input
|
2013-08-25 09:32:33 +04:00
|
|
|
a = input('Enter the value: ')
|
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% Stops execution of file and gives control to the keyboard: user can examine
|
|
|
|
% or change variables. Type 'return' to continue execution, or 'dbquit' to exit
|
|
|
|
keyboard
|
|
|
|
|
|
|
|
% Reading in data (also xlsread/importdata/imread for excel/CSV/image files)
|
2013-08-25 09:32:33 +04:00
|
|
|
fopen(filename)
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Output
|
2013-08-25 09:32:33 +04:00
|
|
|
disp(a) % Print out the value of variable a
|
|
|
|
disp('Hello World') % Print out a string
|
2013-09-15 01:17:41 +04:00
|
|
|
fprintf % Print to Command Window with more control
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
% Conditional statements (the parentheses are optional, but good style)
|
|
|
|
if (a > 15)
|
2013-08-25 09:32:33 +04:00
|
|
|
disp('Greater than 15')
|
2013-09-15 04:41:27 +04:00
|
|
|
elseif (a == 23)
|
2013-08-25 09:32:33 +04:00
|
|
|
disp('a is 23')
|
|
|
|
else
|
|
|
|
disp('neither condition met')
|
|
|
|
end
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Looping
|
|
|
|
% NB. looping over elements of a vector/matrix is slow!
|
|
|
|
% Where possible, use functions that act on whole vector/matrix at once
|
2013-08-25 09:32:33 +04:00
|
|
|
for k = 1:5
|
|
|
|
disp(k)
|
|
|
|
end
|
|
|
|
|
|
|
|
k = 0;
|
|
|
|
while (k < 5)
|
|
|
|
k = k + 1;
|
|
|
|
end
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Timing code execution: 'toc' prints the time since 'tic' was called
|
|
|
|
tic
|
|
|
|
A = rand(1000);
|
|
|
|
A*A*A*A*A*A*A;
|
|
|
|
toc
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Connecting to a MySQL Database
|
2013-08-25 09:32:33 +04:00
|
|
|
dbname = 'database_name';
|
|
|
|
username = 'root';
|
|
|
|
password = 'root';
|
|
|
|
driver = 'com.mysql.jdbc.Driver';
|
|
|
|
dburl = ['jdbc:mysql://localhost:8889/' dbname];
|
|
|
|
javaclasspath('mysql-connector-java-5.1.xx-bin.jar'); %xx depends on version, download available at http://dev.mysql.com/downloads/connector/j/
|
|
|
|
conn = database(dbname, username, password, driver, dburl);
|
2013-09-15 01:17:41 +04:00
|
|
|
sql = ['SELECT * from table_name where id = 22'] % Example sql statement
|
2013-08-25 09:32:33 +04:00
|
|
|
a = fetch(conn, sql) %a will contain your data
|
|
|
|
|
|
|
|
|
|
|
|
% Common math functions
|
|
|
|
sin(x)
|
|
|
|
cos(x)
|
|
|
|
tan(x)
|
|
|
|
asin(x)
|
|
|
|
acos(x)
|
|
|
|
atan(x)
|
|
|
|
exp(x)
|
|
|
|
sqrt(x)
|
|
|
|
log(x)
|
|
|
|
log10(x)
|
|
|
|
abs(x)
|
|
|
|
min(x)
|
|
|
|
max(x)
|
|
|
|
ceil(x)
|
|
|
|
floor(x)
|
|
|
|
round(x)
|
|
|
|
rem(x)
|
2013-09-15 01:17:41 +04:00
|
|
|
rand % Uniformly distributed pseudorandom numbers
|
|
|
|
randi % Uniformly distributed pseudorandom integers
|
|
|
|
randn % Normally distributed pseudorandom numbers
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
% Common constants
|
|
|
|
pi
|
|
|
|
NaN
|
|
|
|
inf
|
|
|
|
|
2013-09-15 01:17:41 +04:00
|
|
|
% Solving matrix equations (if no solution, returns a least squares solution)
|
2013-09-18 21:05:29 +04:00
|
|
|
% The \ and / operators are equivalent to the functions mldivide and mrdivide
|
2013-09-15 04:41:27 +04:00
|
|
|
x=A\b % Solves Ax=b. Faster and more numerically accurate than using inv(A)*b.
|
|
|
|
x=b/A % Solves xA=b
|
2013-09-18 21:05:29 +04:00
|
|
|
|
2013-09-15 04:41:27 +04:00
|
|
|
inv(A) % calculate the inverse matrix
|
|
|
|
pinv(A) % calculate the pseudo-inverse
|
2013-09-15 01:17:41 +04:00
|
|
|
|
2013-08-25 09:32:33 +04:00
|
|
|
% Common matrix functions
|
|
|
|
zeros(m,n) % m x n matrix of 0's
|
|
|
|
ones(m,n) % m x n matrix of 1's
|
2013-09-15 04:41:27 +04:00
|
|
|
diag(A) % Extracts the diagonal elements of a matrix A
|
|
|
|
diag(x) % Construct a matrix with diagonal elements listed in x, and zeroes elsewhere
|
2013-09-15 05:53:32 +04:00
|
|
|
eye(m,n) % Identity matrix
|
2013-09-15 04:41:27 +04:00
|
|
|
linspace(x1, x2, n) % Return n equally spaced points, with min x1 and max x2
|
2013-08-25 09:32:33 +04:00
|
|
|
inv(A) % Inverse of matrix A
|
|
|
|
det(A) % Determinant of A
|
2013-09-15 01:17:41 +04:00
|
|
|
eig(A) % Eigenvalues and eigenvectors of A
|
|
|
|
trace(A) % Trace of matrix - equivalent to sum(diag(A))
|
2013-08-25 09:32:33 +04:00
|
|
|
isempty(A) % Tests if array is empty
|
2013-09-15 01:17:41 +04:00
|
|
|
all(A) % Tests if all elements are nonzero or true
|
|
|
|
any(A) % Tests if any elements are nonzero or true
|
2013-09-15 19:06:26 +04:00
|
|
|
isequal(A, B) % Tests equality of two arrays
|
2013-09-15 01:17:41 +04:00
|
|
|
numel(A) % Number of elements in matrix
|
2013-09-06 18:28:05 +04:00
|
|
|
triu(x) % Returns the upper triangular part of x
|
|
|
|
tril(x) % Returns the lower triangular part of x
|
|
|
|
cross(A,B) % Returns the cross product of the vectors A and B
|
2013-09-15 01:17:41 +04:00
|
|
|
dot(A,B) % Returns scalar product of two vectors (must have the same length)
|
2013-09-06 18:28:05 +04:00
|
|
|
transpose(A) % Returns the transpose of A
|
2014-07-17 17:45:53 +04:00
|
|
|
fliplr(A) % Flip matrix left to right
|
|
|
|
flipud(A) % Flip matrix up to down
|
2013-08-25 09:32:33 +04:00
|
|
|
|
2013-09-15 04:42:13 +04:00
|
|
|
% Matrix Factorisations
|
2013-09-15 04:48:02 +04:00
|
|
|
[L, U, P] = lu(A) % LU decomposition: PA = LU,L is lower triangular, U is upper triangular, P is permutation matrix
|
2013-09-15 04:41:27 +04:00
|
|
|
[P, D] = eig(A) % eigen-decomposition: AP = PD, P's columns are eigenvectors and D's diagonals are eigenvalues
|
|
|
|
[U,S,V] = svd(X) % SVD: XV = US, U and V are unitary matrices, S has non-negative diagonal elements in decreasing order
|
|
|
|
|
2013-09-06 19:24:32 +04:00
|
|
|
% Common vector functions
|
2013-09-15 01:17:41 +04:00
|
|
|
max % largest component
|
|
|
|
min % smallest component
|
|
|
|
length % length of a vector
|
|
|
|
sort % sort in ascending order
|
|
|
|
sum % sum of elements
|
2013-09-15 04:41:27 +04:00
|
|
|
prod % product of elements
|
2013-09-15 01:17:41 +04:00
|
|
|
mode % modal value
|
|
|
|
median % median value
|
|
|
|
mean % mean value
|
|
|
|
std % standard deviation
|
|
|
|
perms(x) % list all permutations of elements of x
|
2013-08-25 09:32:33 +04:00
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
## More on Matlab
|
|
|
|
|
|
|
|
* The official website [http://http://www.mathworks.com/products/matlab/](http://www.mathworks.com/products/matlab/)
|
2013-09-15 01:17:41 +04:00
|
|
|
* The official MATLAB Answers forum: [http://www.mathworks.com/matlabcentral/answers/](http://www.mathworks.com/matlabcentral/answers/)
|
|
|
|
|