2014-10-24 08:48:59 +04:00
---
language: python3
contributors:
- ["Louie Dinh", "http://pythonpracticeprojects.com"]
- ["Steven Basart", "http://github.com/xksteven"]
- ["Andre Polykanine", "https://github.com/Oire"]
translators:
- ["Geoff Liu", "http://geoffliu.me"]
filename: learnpython3.py
---
Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular
languages in existence. I fell in love with Python for its syntactic clarity. It's basically
executable pseudocode.
Feedback would be highly appreciated! You can reach me at [@louiedinh ](http://twitter.com/louiedinh ) or louiedinh [at] [google's email service]
Note: This article applies to Python 3 specifically. Check out the other tutorial if you want to learn the old Python 2.7
```python
# 用井字符开头的是单行注释
""" 多行字符串用三个引号
包裹,也常被用来做多
行注释
"""
####################################################
## 1. 原始数据类型和运算符
####################################################
# 整数
3 # => 3
# 算术没有什么出乎意料的
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
# 但是除法例外,会自动转换成浮点数
35 / 5 # => 7.0
5 / 3 # => 1.6666666666666667
2014-10-24 19:24:51 +04:00
# 整数除法的结果都是向下取整
2014-10-24 08:48:59 +04:00
5 // 3 # => 1
2014-10-24 19:24:51 +04:00
5.0 // 3.0 # => 1.0 # 浮点数也可以
2014-10-24 08:48:59 +04:00
-5 // 3 # => -2
-5.0 // 3.0 # => -2.0
# 浮点数的运算结果也是浮点数
3 * 2.0 # => 6.0
2014-10-24 09:05:33 +04:00
# 模除
2014-10-24 08:48:59 +04:00
7 % 3 # => 1
# x的y次方
2**4 # => 16
# 用括号决定优先级
(1 + 3) * 2 # => 8
# 布尔值
True
False
# 用not取非
not True # => False
not False # => True
# 逻辑运算符, 注意and和or都是小写
True and False #=> False
False or True #=> True
2014-10-24 09:05:33 +04:00
# 整数也可以当作布尔值
2014-10-24 08:48:59 +04:00
0 and 2 #=> 0
-5 or 0 #=> -5
0 == False #=> True
2 == True #=> False
1 == True #=> True
# 用==判断相等
1 == 1 # => True
2 == 1 # => False
# 用!=判断不等
1 != 1 # => False
2 != 1 # => True
# 比较大小
1 < 10 # = > True
1 > 10 # => False
2 < = 2 # => True
2 >= 2 # => True
# 大小比较可以连起来!
1 < 2 < 3 # = > True
2 < 3 < 2 # = > False
# 字符串用单引双引都可以
"这是个字符串"
'这也是个字符串'
2014-10-24 09:05:33 +04:00
# 用加号连接字符串
2014-10-24 08:48:59 +04:00
"Hello " + "world!" # => "Hello world!"
2014-10-24 09:05:33 +04:00
# 字符串可以被当作字符列表
2014-10-24 08:48:59 +04:00
"This is a string"[0] # => 'T'
2014-10-24 19:24:51 +04:00
# 用.format来格式化字符串
2014-10-24 08:48:59 +04:00
"{} can be {}".format("strings", "interpolated")
2014-10-24 19:24:51 +04:00
# 可以重复参数以节省时间
2014-10-24 08:48:59 +04:00
"{0} be nimble, {0} be quick, {0} jump over the {1}".format("Jack", "candle stick")
#=> "Jack be nimble, Jack be quick, Jack jump over the candle stick"
2014-10-24 19:24:51 +04:00
# 如果不想数参数,可以用关键字
2014-10-24 08:48:59 +04:00
"{name} wants to eat {food}".format(name="Bob", food="lasagna") #=> "Bob wants to eat lasagna"
2014-10-24 19:24:51 +04:00
# 如果你的Python3程序也要在Python2.5以下环境运行,也可以用老式的格式化语法
2014-10-24 08:48:59 +04:00
"%s can be %s the %s way" % ("strings", "interpolated", "old")
2014-10-24 19:24:51 +04:00
# None是一个对象
2014-10-24 08:48:59 +04:00
None # => None
# Don't use the equality "==" symbol to compare objects to None
# Use "is" instead. This checks for equality of object identity.
"etc" is None # => False
None is None # => True
2014-10-24 19:24:51 +04:00
# None, 0, 空字符串, 空列表, 空关联数组都算是False
# 所有其他值都是True
2014-10-24 08:48:59 +04:00
bool(0) # => False
bool("") # => False
bool([]) #=> False
bool({}) #=> False
####################################################
2014-10-24 09:05:33 +04:00
## 2. 变量和集合
2014-10-24 08:48:59 +04:00
####################################################
2014-11-01 00:40:49 +03:00
# print是内置的打印函数
2014-10-24 08:48:59 +04:00
print("I'm Python. Nice to meet you!")
2014-11-01 00:40:49 +03:00
# 在给变量赋值前不用提前声明
# 传统的变量命名是小写,用下划线分隔单词
2014-10-24 08:48:59 +04:00
some_var = 5
some_var # => 5
2014-11-01 00:40:49 +03:00
# 存取未赋值的变量会抛出异常
# 下面流程控制一段更深入讲解异常处理
some_unknown_var # 抛出NameError
2014-10-24 08:48:59 +04:00
2014-11-01 00:40:49 +03:00
# 用列表(list)储存序列
2014-10-24 08:48:59 +04:00
li = []
2014-11-01 00:40:49 +03:00
# 创建列表时也可以同时赋给元素
2014-10-24 08:48:59 +04:00
other_li = [4, 5, 6]
2014-11-01 00:40:49 +03:00
# 用append在列表最后追加元素
li.append(1) # li现在是[1]
li.append(2) # li现在是[1, 2]
li.append(4) # li现在是[1, 2, 4]
li.append(3) # li现在是[1, 2, 4, 3]
# 用pop从列表尾部删除
li.pop() # => 3 且li现在是[1, 2, 4]
# 把3再放回去
li.append(3) # li变回[1, 2, 4, 3]
# 列表取值跟数组一样
2014-10-24 08:48:59 +04:00
li[0] # => 1
2014-11-01 00:40:49 +03:00
# 取出最后一个元素
2014-10-24 08:48:59 +04:00
li[-1] # => 3
2014-11-01 00:40:49 +03:00
# 越界读取会造成IndexError
li[4] # 抛出IndexError
2014-10-24 08:48:59 +04:00
2014-11-01 00:40:49 +03:00
# 列表的切割语法
2014-10-24 08:48:59 +04:00
# (It's a closed/open range for you mathy types.)
li[1:3] # => [2, 4]
2014-11-01 00:40:49 +03:00
# 取尾
2014-10-24 08:48:59 +04:00
li[2:] # => [4, 3]
2014-11-01 00:40:49 +03:00
# 取头
2014-10-24 08:48:59 +04:00
li[:3] # => [1, 2, 4]
2014-11-01 00:40:49 +03:00
# 每两个取一个
2014-10-24 08:48:59 +04:00
li[::2] # =>[1, 4]
2014-11-01 00:40:49 +03:00
# 倒排列表
2014-10-24 08:48:59 +04:00
li[::-1] # => [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]
2014-11-01 00:40:49 +03:00
# 用del删除任何一个元素
2014-10-24 08:48:59 +04:00
del li[2] # li is now [1, 2, 3]
2014-11-01 00:40:49 +03:00
# 列表可以相加
# 注意: li和other_li的值都不变
2014-10-24 08:48:59 +04:00
li + other_li # => [1, 2, 3, 4, 5, 6]
# Concatenate lists with "extend()"
li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]
# Check for existence in a list with "in"
1 in li # => True
# Examine the length with "len()"
len(li) # => 6
# Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0] # => 1
tup[0] = 3 # Raises a TypeError
2014-11-01 00:40:49 +03:00
# 列表允许的操作元组也可以
2014-10-24 08:48:59 +04:00
len(tup) # => 3
tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
tup[:2] # => (1, 2)
2 in tup # => True
# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
# Now look how easy it is to swap two values
e, d = d, e # d is now 5 and e is now 4
# Dictionaries store mappings
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}
# Look up values with []
filled_dict["one"] # => 1
# Get all keys as a list with "keys()".
# We need to wrap the call in list() because we are getting back an iterable. We'll talk about those later.
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly.
list(filled_dict.keys()) # => ["three", "two", "one"]
# Get all values as a list with "values()". Once again we need to wrap it in list() to get it out of the iterable.
# Note - Same as above regarding key ordering.
list(filled_dict.values()) # => [3, 2, 1]
# Check for existence of keys in a dictionary with "in"
"one" in filled_dict # => True
1 in filled_dict # => False
# Looking up a non-existing key is a KeyError
filled_dict["four"] # KeyError
# Use "get()" method to avoid the KeyError
filled_dict.get("one") # => 1
filled_dict.get("four") # => None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4) # => 1
filled_dict.get("four", 4) # => 4
# "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5) # filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) # filled_dict["five"] is still 5
# Adding to a dictionary
filled_dict.update({"four":4}) #=> {"one": 1, "two": 2, "three": 3, "four": 4}
#filled_dict["four"] = 4 #another way to add to dict
# Remove keys from a dictionary with del
del filled_dict["one"] # Removes the key "one" from filled dict
# Sets store ... well sets
empty_set = set()
# Initialize a set with a bunch of values. Yeah, it looks a bit like a dict. Sorry.
some_set = {1, 1, 2, 2, 3, 4} # some_set is now {1, 2, 3, 4}
#Can set new variables to a set
filled_set = some_set
# Add one more item to the set
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}
# Do set intersection with &
other_set = {3, 4, 5, 6}
filled_set & other_set # => {3, 4, 5}
# Do set union with |
filled_set | other_set # => {1, 2, 3, 4, 5, 6}
# Do set difference with -
{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
# Check for existence in a set with in
2 in filled_set # => True
10 in filled_set # => False
####################################################
2014-10-24 09:05:33 +04:00
## 3. 流程控制和迭代器
2014-10-24 08:48:59 +04:00
####################################################
2014-11-01 00:40:49 +03:00
# 先随便定义一个变量
2014-10-24 08:48:59 +04:00
some_var = 5
2014-11-01 00:40:49 +03:00
# 这是个if语句。注意缩进在Python里是有意义的
# 印出"some_var比10小"
2014-10-24 08:48:59 +04:00
if some_var > 10:
2014-11-01 00:40:49 +03:00
print("some_var比10大")
elif some_var < 10: # elif句是可选的
print("some_var比10小")
else: # else也是可选的
print("some_var就是10")
2014-10-24 08:48:59 +04:00
"""
For loops iterate over lists
prints:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
# You can use format() to interpolate formatted strings
print("{} is a mammal".format(animal))
"""
"range(number)" returns a list of numbers
from zero to the given number
prints:
0
1
2
3
"""
for i in range(4):
print(i)
"""
While loops go until a condition is no longer met.
prints:
0
1
2
3
"""
x = 0
while x < 4:
print(x)
x += 1 # Shorthand for x = x + 1
# Handle exceptions with a try/except block
try:
# Use "raise" to raise an error
raise IndexError("This is an index error")
except IndexError as e:
pass # Pass is just a no-op. Usually you would do recovery here.
except (TypeError, NameError):
pass # Multiple exceptions can be handled together, if required.
else: # Optional clause to the try/except block. Must follow all except blocks
print("All good!") # Runs only if the code in try raises no exceptions
# Python offers a fundamental abstraction called the Iterable.
# An iterable is an object that can be treated as a sequence.
# The object returned the range function, is an iterable.
filled_dict = {"one": 1, "two": 2, "three": 3}
our_iterable = filled_dict.keys()
print(our_iterable) #=> range(1,10). This is an object that implements our Iterable interface
# We can loop over it.
for i in our_iterable:
print(i) # Prints one, two, three
# However we cannot address elements by index.
our_iterable[1] # Raises a TypeError
# An iterable is an object that knows how to create an iterator.
our_iterator = iter(our_iterable)
# Our iterator is an object that can remember the state as we traverse through it.
# We get the next object by calling the __next__ function.
our_iterator.__next__() #=> "one"
# It maintains state as we call __next__.
our_iterator.__next__() #=> "two"
our_iterator.__next__() #=> "three"
# After the iterator has returned all of its data, it gives you a StopIterator Exception
our_iterator.__next__() # Raises StopIteration
# You can grab all the elements of an iterator by calling list() on it.
list(filled_dict.keys()) #=> Returns ["one", "two", "three"]
####################################################
2014-10-24 09:05:33 +04:00
## 4. 函数
2014-10-24 08:48:59 +04:00
####################################################
2014-11-01 00:40:49 +03:00
# 用def定义新函数
2014-10-24 08:48:59 +04:00
def add(x, y):
print("x is {} and y is {}".format(x, y))
2014-11-01 00:40:49 +03:00
return x + y # 用return语句返回
2014-10-24 08:48:59 +04:00
2014-11-01 00:40:49 +03:00
# 调用函数
add(5, 6) # => 印出"x is 5 and y is 6"并且返回11
2014-10-24 08:48:59 +04:00
2014-11-01 00:40:49 +03:00
# 也可以用关键字参数来调用函数
add(y=6, x=5) # 关键字参数可以用任何顺序
2014-10-24 08:48:59 +04:00
# You can define functions that take a variable number of
# positional arguments
def varargs(*args):
return args
varargs(1, 2, 3) # => (1, 2, 3)
# You can define functions that take a variable number of
# keyword arguments, as well
def keyword_args(**kwargs):
return kwargs
# Let's call it to see what happens
keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
# You can do both at once, if you like
def all_the_args(*args, **kwargs):
print(args)
print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) prints:
(1, 2)
{"a": 3, "b": 4}
"""
# When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
# Function Scope
x = 5
def setX(num):
# Local var x not the same as global variable x
x = num # => 43
print (x) # => 43
def setGlobalX(num):
global x
print (x) # => 5
x = num # global var x is now set to 6
print (x) # => 6
setX(43)
setGlobalX(6)
# Python has first class functions
def create_adder(x):
def adder(y):
return x + y
return adder
add_10 = create_adder(10)
add_10(3) # => 13
# There are also anonymous functions
(lambda x: x > 2)(3) # => True
# TODO - Fix for iterables
# There are built-in higher order functions
map(add_10, [1, 2, 3]) # => [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# We can use list comprehensions for nice maps and filters
# List comprehension stores the output as a list which can itself be a nested list
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
2014-10-24 09:05:33 +04:00
## 5. 类
2014-10-24 08:48:59 +04:00
####################################################
# We subclass from object to get a class.
class Human(object):
# A class attribute. It is shared by all instances of this class
species = "H. sapiens"
# Basic initializer, this is called when this class is instantiated.
# Note that the double leading and trailing underscores denote objects
# or attributes that are used by python but that live in user-controlled
# namespaces. You should not invent such names on your own.
def __init__ (self, name):
# Assign the argument to the instance's name attribute
self.name = name
# An instance method. All methods take "self" as the first argument
def say(self, msg):
return "{name}: {message}".format(name=self.name, message=msg)
# A class method is shared among all instances
# They are called with the calling class as the first argument
@classmethod
def get_species(cls):
return cls.species
# A static method is called without a class or instance reference
@staticmethod
def grunt():
return "*grunt*"
# Instantiate a class
i = Human(name="Ian")
print(i.say("hi")) # prints out "Ian: hi"
j = Human("Joel")
print(j.say("hello")) # prints out "Joel: hello"
# Call our class method
i.get_species() # => "H. sapiens"
# Change the shared attribute
Human.species = "H. neanderthalensis"
i.get_species() # => "H. neanderthalensis"
j.get_species() # => "H. neanderthalensis"
# Call the static method
Human.grunt() # => "*grunt*"
####################################################
2014-10-24 09:05:33 +04:00
## 6. 模块
2014-10-24 08:48:59 +04:00
####################################################
# You can import modules
import math
print(math.sqrt(16)) # => 4
# You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7)) # => 4.0
print(floor(3.7)) # => 3.0
# You can import all functions from a module.
# Warning: this is not recommended
from math import *
# You can shorten module names
import math as m
math.sqrt(16) == m.sqrt(16) # => True
# Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.
# You can find out which functions and attributes
# defines a module.
import math
dir(math)
####################################################
2014-10-24 09:05:33 +04:00
## 7. 高级用法
2014-10-24 08:48:59 +04:00
####################################################
# Generators help you make lazy code
def double_numbers(iterable):
for i in iterable:
yield i + i
# A generator creates values on the fly.
# Instead of generating and returning all values at once it creates one in each
# iteration. This means values bigger than 15 wont be processed in
# double_numbers.
# Note range is a generator too. Creating a list 1-900000000 would take lot of
# time to be made
# We use a trailing underscore in variable names when we want to use a name that
# would normally collide with a python keyword
range_ = range(1, 900000000)
# will double all numbers until a result >=30 found
for i in double_numbers(range_):
print(i)
if i >= 30:
break
# Decorators
# in this example beg wraps say
# Beg will call say. If say_please is True then it will change the returned
# message
from functools import wraps
def beg(target_function):
@wraps (target_function)
def wrapper(*args, **kwargs):
msg, say_please = target_function(*args, **kwargs)
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
return wrapper
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
print(say()) # Can you buy me a beer?
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
```
## Ready For More?
### Free Online
* [Learn Python The Hard Way ](http://learnpythonthehardway.org/book/ )
* [Dive Into Python ](http://www.diveintopython.net/ )
* [Ideas for Python Projects ](http://pythonpracticeprojects.com )
* [The Official Docs ](http://docs.python.org/3/ )
* [Hitchhiker's Guide to Python ](http://docs.python-guide.org/en/latest/ )
* [Python Module of the Week ](http://pymotw.com/3/ )
* [A Crash Course in Python for Scientists ](http://nbviewer.ipython.org/5920182 )
### Dead Tree
* [Programming Python ](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20 )
* [Dive Into Python ](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20 )
* [Python Essential Reference ](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20 )