2019-10-19 16:01:29 +03:00
---
2020-02-12 07:15:29 +03:00
language: Python
2019-10-19 16:01:29 +03:00
contributors:
- ["Louie Dinh", "http://pythonpracticeprojects.com"]
- ["Steven Basart", "http://github.com/xksteven"]
- ["Andre Polykanine", "https://github.com/Oire"]
- ["Zachary Ferguson", "http://github.com/zfergus2"]
- ["evuez", "http://github.com/evuez"]
- ["Rommel Martinez", "https://ebzzry.io"]
- ["Roberto Fernandez Diaz", "https://github.com/robertofd1995"]
2020-02-12 08:23:31 +03:00
filename: learnpython-gr.py
2020-02-09 19:40:49 +03:00
lang: el-gr
2019-10-19 16:01:29 +03:00
---
Η Python δημιουργήθηκε από τον Guido van Rossum στις αρχές των 90s. Πλέον είναι μία από τις πιο
δημοφιλείς γλώσσες. Ερωτευεται κανείς την python γ ι α τη συντακτική της απλότητα.
Βασικά είναι εκτελέσιμος ψευδοκώδικας.
2020-02-12 07:03:08 +03:00
Σημείωση: Τ ο παρόν άρθρο ασχολείται μόνο με την Python 3. Δείτε [εδώ ](http://learnxinyminutes.com/docs/pythonlegacy/ ) α ν θέλετε ν α μάθετε την παλιά Python 2.7
2019-10-19 16:01:29 +03:00
```python
# Τ α σχόλια μίας γραμμής ξεκινούν με #
""" Τ α σχόλια πολλαπλών γραμμών μπορούν
ν α γραφούν με τρία ", και συχνά χρησιμοποιούνται
ως documentation.
"""
####################################################
## 1. Primitive (πρωταρχικοί) Τύποι Δεδομένων και Τελεστές
####################################################
# Αφού έχει αριθμούς
3 # => 3
# Λογικά θα έχει και Μαθηματικά...
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7.0
# Η διαίρεση ακεραίων κάνει στρογγυλοποίηση προς τα κάτω γ ι α θετικούς και αρνητικούς αριθμούς
5 // 3 # => 1
-5 // 3 # => -2
5.0 // 3.0 # => 1.0 # works on floats too
-5.0 // 3.0 # => -2.0
# Τ ο αποτέλεσμα της διαίρεσης είναι πάντα float
10.0 / 3 # => 3.3333333333333335
# Modulo τελεστής
7 % 3 # => 1
# Ύψωση σε δύναμη (x**y, x στην y-οστή δύναμη)
2**3 # => 8
# Ελέγχουμε την προτεραιότητα πράξεων με παρενθέσεις
(1 + 3) * 2 # => 8
# Ο ι Boolean τιμές είναι primitives (Σημ.: τα κεφαλαία)
True
False
# άρνηση με το not
not True # => False
not False # => True
# Boolean τελεστές
# Σημ. ότι τα "and" και "or" είναι case-sensitive
True and False # => False
False or True # => True
# Τ α True και False είναι 1 και 0 αλλά με διαφορετικά keywords
True + True # => 2
True * 8 # => 8
False - 5 # => -5
# Μπορούμε ν α δούμε τις αριθμητικές τιμές των True και False μέσω των τελεστών σύγκρισης
0 == False # => True
1 == True # => True
2 == True # => False
-5 != False # => True
# Χρησιμοποιώντας τελεστές boolean σε ακεραίους, ο ι ακέραιοι γίνονται cast σε
# boolean ώστε ν α γίνει η αποτίμηση της έκφρασης.
# Τ ο αποτέλεσμα όμως είναι non-cast, δηλαδή ίδιου τύπου με τα αρχικά ορίσματα
# Μην μπερδεύετε τις bool(ints) και bitwise and/or (&,|)
bool(0) # => False
bool(4) # => True
bool(-6) # => True
0 and 2 # => 0
-5 or 0 # => -5
# Ισότητα ==
1 == 1 # => True
2 == 1 # => False
# Διάφορο !=
1 != 1 # => False
2 != 1 # => True
# Περισσότερες συγκρίσεις
1 < 10 # = > True
1 > 10 # => False
2 < = 2 # => True
2 >= 2 # => True
# Κοιτάζουμε α ν μία τιμή ανήκει σε ένα εύρος
1 < 2 and 2 < 3 # = > True
2 < 3 and 3 < 2 # = > False
# Τ ο Chaining (αλυσίδωση? :P) κάνει το παραπάνω πιο όμορφα
1 < 2 < 3 # = > True
2 < 3 < 2 # = > False
# (is vs. ==) το is ελέγχει α ν δύο μεταβλητές αναφέρονται στο ίδιο αντικείμενο,
# αλλά το == ελέγχει α ν τα αντικείμενα στα οποία αναφέρονται ο ι μεταβλητές έχουν τις ίδιες τιμές
a = [1, 2, 3, 4] # το a δείχνει σε μία νέα λίστα, [1,2,3,4]
b = a # το b δείχνει στο αντικείμενο που δείχνει το a
b is a # => True, a και b αναφέρονται στο ίδιο αντικείμενο
b == a # => True, τα αντικείμενα των a κι b είναι ίσα
b = [1, 2, 3, 4] # Τ ο b δείχνει σε μία νέα λίστα, [1, 2, 3, 4]
b is a # => False, a και b δεν αναφέρονται στο ίδιο αντικείμενο
b == a # => True, τα αντικείμενα των a και b είναι ίσα
# Τ α Strings (συμβολοσειρές) δημιουργούνται με " ή '
"This is a string."
'This is also a string.'
# Μπορούμε και ν α προσθέτουμε Strings, αλλά προσπαθήστε ν α μην το κάνετε
"Hello " + "world!" # => "Hello world!"
# Τ α String literals (αλλά όχι ο ι μεταβλητές) μπορούν ν α συντμιθούν και χωρίς το '+'
"Hello " "world!" # => "Hello world!"
# Μπορούμε ν α φερθούμε σε string σ α ν ν α είναι λίστα από χαρακτήρες
"This is a string"[0] # => 'T'
# Μπορούμε ν α βρούμε το μήκος ενός string
len("This is a string") # => 16
# Τ ο .format μπορεί ν α χρησιμοποιηθεί γ ι α ν α μορφοποιήσουμε strings, όπως εδώ:
"{} can be {}".format("Strings", "interpolated") # => "Strings can be interpolated"
# Μπορείς ν α επαναλάβεις τα ορίσματα του formatting γ ι α ν α γλιτώσεις λίγο χρονο
"{0} be nimble, {0} be quick, {0} jump over the {1}".format("Jack", "candle stick")
# => "Jack be nimble, Jack be quick, Jack jump over the candle stick"
# Μπορείς ν α χρησιμοποιήσεις keywords α ν βαριέσαι το μέτρημα.
"{name} wants to eat {food}".format(name="Bob", food="lasagna") # => "Bob wants to eat lasagna"
# Α ν ο κώδικας Python 3 που γράφεις πρόκειται ν α τρέξει και με python 2.5 ή παλιότερη
# μπορείς επίσης ν α χρησιμοποιήσεις το παλιό τρόπο γ ι α formatting:
"%s can be %s the %s way" % ("Strings", "interpolated", "old") # => "Strings can be interpolated the old way"
# Μπορείς επίσης ν α μορφοποιήσεις χρησιμοποιώντας τα f-strings / formatted string literals (σε Python 3.6+)
name = "Reiko"
f"She said her name is {name}." # => "She said her name is Reiko"
# Μπορείς βασικά ν α βάλεις οποιαδήποτε έκφραση Python στα άγκιστρα και θα εμφανιστεί στο string.
f"{name} is {len(name)} characters long."
# το None είναι ένα αντικείμενο (object)
None # => None
# Μη χρησιμοποιείτε το σύμβολο ισότητας "==" γ ι α ν α συγκρίνετε αντικείμενα με το None
# Χρησιμοποιείτε το "is". Αυτό ελέγχει γ ι α ισότητα της ταυτότητας του αντικειμένου.
"etc" is None # => False
None is None # => True
# Τ α None, 0, και τα κενά strings/lists/dicts/tuples αποτιμούνται στην τιμή False
# All other values are True
bool(0) # => False
bool("") # => False
bool([]) # => False
bool({}) # => False
bool(()) # => False
####################################################
## 2. Μεταβλητές (variables) και Συλλογές (collections)
####################################################
# Η Python έχει μία συνάρτηση print()
print("I'm Python. Nice to meet you!") # => I'm Python. Nice to meet you!
# By default, η συνάρτηση print() τυπώνει και ένα χαρακτήρα αλλαγής γραμμμής στο τέλος
# Χρησιμοποιείτε το προαιρετικό όρισμο end γ ι α ν α τυπώνει οτιδήποτε άλλο
print("Hello, World", end="!") # => Hello, World!
# Απλός τρόπος γ ι α ν α πάρουμε δεδομένα εισόδου από το console
input_string_var = input("Enter some data: ") # επιστρέφει τα δεδομένα ως string
# Σημ.: Στις προηγούμενες εκδόσεις της Python, η μέθοδος input() ονομαζόταν raw_input()
# Δεν υπάρχουν δηλώσεις, μόνο αναθέσεις τιμών.
# Η σύμβαση είναι ν α χρησιμοποιούμε μικρά γράμματα με κάτω παύλες
some_var = 5
some_var # => 5
# Η πρόσβαση σε μεταβλητή που δεν έχει λάβει τιμή είναι εξαίρεση
# Δες τον Έλεγχο Ροής γ ι α ν α μάθεις περισσότερα γ ι α το χειρισμό εξαιρέσεων
some_unknown_var # Προκαλέι ένα NameError
# Η παρακάτω έκφραση μπορεί ν α χρησιμποιηθεί ισοδύναμα με τον τελεστή '?' της C
"yahoo!" if 3 > 2 else 2 # => "yahoo!"
# Ο ι λίστες κρατούν ακολουθίς
li = []
# Μπορείς ν α αρχίσεις με μία προ-γεμισμένη λίστα
other_li = [4, 5, 6]
# Κ α ι ν α βάλεις πράγματα στο τέλος με την μέθοδο append
li.append(1) # η li τώρα είναι [1]
li.append(2) # η li τώρα είναι [1, 2]
li.append(4) # η li τώρα είναι [1, 2, 4]
li.append(3) # η li τώρα είναι [1, 2, 4, 3]
# Αφαιρούμε από το τέλος με την μέθοδο pop
li.pop() # => 3 και η li γίνεται [1, 2, 4]
# Ας βάλουμε το 3 πίσω στη θέση του
li.append(3) # η li γίνεται πάλι [1, 2, 4, 3].
# Προσπελαύνουμε τις λίστες όπως τους πίνακες σε άλλες γλώσσες
li[0] # => 1
# Τ ο τελευταίο στοιχείο...
li[-1] # => 3
# Όταν βγαίνουμε εκτός ορίων της λίστας προκαλείται IndexError
li[4] # προκαλεί IndexError
# Μπορείς ν α δεις ranges μιας λίστας με το slice syntax ':'
# Ο δείκτης εκίνησης περιλαμβάνεται στο διάστημα, ο δείκτης τερματισμού όχι
# (είναι ανοικτό/κλειστό διάστημα γ ι α τους φίλους των μαθηματικών)
li[1:3] # => [2, 4]
# Αγνόησε την αρχή και επίστρεψε τη λίστα
li[2:] # => [4, 3]
# Αγνόησε το τέλος και επίστρεψε τη λίστα
li[:3] # => [1, 2, 4]
# Διάλεξε κάθε δεύτερο στοιχείο
li[::2] # =>[1, 4]
# Επίστρεψε ένα reversed αντίγραφο της λίστας
li[::-1] # => [3, 4, 2, 1]
# Χρησιμοποιείστε οποιαδήποτε συνδυασμό αυτών γ ι α ν α φτιάξετε πιο προχωρημένα slices
# li[start:end:step]
# Φτιάξε ένα αντίγραφο της λίστας χρησιμοποιώντας slices
li2 = li[:] # => li2 = [1, 2, 4, 3] αλλά το (li2 is li) επιστρέφει False
# Αφαίρεσε οποιοδήποτε στοιχείο από λίστα με την εντολή "del"
del li[2] # η li γίνεται [1, 2, 3]
# Αφαιρούμε το πρώτο στιγμυότυπο μιας τιμής
li.remove(2) # η li γίνεται [1, 3]
li.remove(2) # Προκαλεί ένα ValueError καθώς το 2 δεν βρίσκεται στη λίστα.
# Εισαγωγή ενός στοιχείου σε συγκεκριμένη θέση
li.insert(1, 2) # η li γίνεται πάλι [1, 2, 3]
# Βρες το index (δείκτη) του πρώτου στοιχείου με τιμή ίση με το όρισμα
li.index(2) # => 1
li.index(4) # Προκαλεί ValueError καθώς το 4 δεν βρίσκεται στη λίστα
# Μπορείς ν α προσθέτεις λίστες
# Σημ.: ο ι τιμές των li, other_li δεν αλλάζουν.
li + other_li # => [1, 2, 3, 4, 5, 6]
# Σύντμιση λιστών με τη μέθοδο "extend()"
li.extend(other_li) # Τώρα η li είναι [1, 2, 3, 4, 5, 6]
# Ελεγχος της ύπαρξης στοιχείου σε λίστα με το "in"
1 in li # => True
# Εξατάζουμε το μήκος με "len()"
len(li) # => 6
# Τ α Tuples είναι σ α ν τις λίστες αλλά είναι αμετάβλητα (immutable).
tup = (1, 2, 3)
tup[0] # => 1
tup[0] = 3 # Προκαλεί TypeError
# Σημειώστε ότι ένα tuple μήκους 1 πρέπει ν α έχει ένα κόμμα μετά το τελευταίο στοιχείο
# αλλά τα tuples άλλων μηκών, ακόμα και μηδενικού μήκους, δεν χρειάζονται κόμμα.
type((1)) # => < class ' int ' >
type((1,)) # => < class ' tuple ' >
type(()) # => < class ' tuple ' >
# Μπορείς ν α εφαρμόσεις τις περισσότερες μεθόδους των λιστών και στα tuples
len(tup) # => 3
tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
tup[:2] # => (1, 2)
2 in tup # => True
# Μπορείς ν α κάνεις unpack/"ξεπακετάρεις" tuples σε μεταβλητές
a, b, c = (1, 2, 3) # a == 1, b == 2 και c == 3
# Μπορείς επίσης ν α επεκτείνεις το unpacking
a, *b, c = (1, 2, 3, 4) # a == 1, b == [2, 3] και c == 4
# Τ α Tuples δημιουργούνται by deafult α ν δεν βάλεις παρενθέσεις
d, e, f = 4, 5, 6 # το tuple 4, 5, 6 "ξεπακετάρεται" στις μεταβλητές d, e και f
# αντίστοιχα έτσι ώστε ν α γίνεται d = 4, e = 5 and f = 6
# Δείτε πόσο εύκολα μπορούμε ν α εναλλάσουμε δύο τιμές
e, d = d, e # το d παίρνει την τιμή 5 και το e παίρνει την τιμή 4
# Τ α λεξικά (Dictionaries) αποθηκεύουν απεικονίσεις από κλειδιά σε τιμές
empty_dict = {}
# Εδώ έχουμε ένα προ-γεμισμένο dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}
# Σημ. ότι τα κλειδιά γ ι α τα dictionaries πρέπει ν α είναι αμετάβλητοι τύποι
# (immutable) αυτό γίνετια γ ι α ν α διασφαλίσουμε ότι τα κλειδιά μπορούν ν α
# μετατρέπονται σε σταθερές τιμές κατακερματισμού (hash values) γ ι α γρήγορη εύρεση.
# Μερικοί αμετάβλητοι τύποι είναι τα ints, floats, strings, tuples.
invalid_dict = {[1,2,3]: "123"} # => Προκαλεί TypeError: unhashable type: 'list'
valid_dict = {(1,2,3):[1,2,3]} # Ο ι τιμές όμως μπορούν ν α έχουν οποιοδήποτε τύπο.
# Βρίσκουμε τιμές με []
filled_dict["one"] # => 1
# Μπορείς ν α πάρεις όλα τα κλειδιά με τη μέθοδο "keys()".
# Πρέπει ν α "τυλίξουμε" την κλήση με list() γ ι α ν α το μετατρέψουμε σε λίστα
# Θα μιλήσουμε γ ι α αυτά αργότερα. Σημ. - σε εκδόσεις Python < 3.7, η σειρά που
# εμφανίζονται τα κλειδιά δεν είναι εγγυημένη. Τ α αποτελέσματά σας ίσως ν α μην
# είναι ακριβώς ίδια με τα παρακάτω. Στην έκδοση 3.7 πάντως, τα αντικείμενα του
# λεξικού διατηρούν τη σειρά με την οποία εισήχθησαν στο dictionary
list(filled_dict.keys()) # => ["three", "two", "one"] σε Python < 3.7
list(filled_dict.keys()) # => ["one", "two", "three"] σε Python 3.7+
# Παίρνουμε όλες τις τιμές ενός iterable με τη μέθοδο "values()". Κ α ι πάλι
# χρειάζεται ν α το περιτυλίξουμε σε list()
# Σημ. - όπως παραπάνω σχετικά με τη σειρά των keys
list(filled_dict.values()) # => [3, 2, 1] in Python < 3.7
list(filled_dict.values()) # => [1, 2, 3] in Python 3.7+
# Έλεγχος της ύπαρξης κλειδιών σε ένα dictionary με το "in"
"one" in filled_dict # => True
1 in filled_dict # => False
# Α ν ψάξεις την τιμή ανύπαρκτου κλειδιού προκαλείται KeyError
filled_dict["four"] # KeyError
# Χρησιμοποιούμε τη μέθοδο "get()" γ ι α ν α αποφύγουμε το KeyError
filled_dict.get("one") # => 1
filled_dict.get("four") # => None
# στο δεύτερο argument της get() μπορούμε ν α βάλουμε μία τιμή που πρέπει ν α
# επιστρέψει α ν δεν υπάρχει το key που ψάχνουμε
filled_dict.get("one", 4) # => 1
filled_dict.get("four", 4) # => 4
# το "setdefault()" εισάγει στο dictionary μόνο α ν δεν υπάρχει το κλειδί
filled_dict.setdefault("five", 5) # filled_dict["five"] γίνεται 5
filled_dict.setdefault("five", 6) # filled_dict["five"] μένει 5 (υπαρκτό κλειδί)
# Προσθήκη σε dictionary
filled_dict.update({"four":4}) # => {"one": 1, "two": 2, "three": 3, "four": 4}
filled_dict["four"] = 4 # β' τρόπος
# Αφαίρεση κλειδιών από dictionary με del
del filled_dict["one"] # Αφαιρεί το κλειδί "one" από το filled_dict
# Από την Python 3.5 μπορείς ν α χρησιμοποιήσεις και πρόσθετες επιλογές γ ι α unpacking
{'a': 1, ** {'b': 2}} # => {'a': 1, 'b': 2}
{'a': 1, ** {'a': 2}} # => {'a': 2}
# τα Sets -όπως όλοι περιμένουμε- αποθηκεύουν σύνολα
empty_set = set()
# Αρχικοποιούμε ένα set με μερικές τιμές. Ν α ι , μοιάζει λίγο με dictionary, Sorry.
some_set = {1, 1, 2, 2, 3, 4} # some_set is now {1, 2, 3, 4}
# Παρομοίως με τα κλειδιά του dictionary, τα στοιχεία ενός συνόλου πρέπει ν α είναι
# αμετάβλητα (immutable)
invalid_set = {[1], 1} # => Προκαλεί TypeError: unhashable type: 'list'
valid_set = {(1,), 1}
# Προσθέτουμε άλλο ένα στοιχείο στο σύνολο
filled_set = some_set
filled_set.add(5) # το filled_set είναι τώρα {1, 2, 3, 4, 5}
# Τ α σύνολα δεν έχουν διπλοτυπα αντικείμενα
filled_set.add(5) # το σύνολο παραμένει ίδιο {1, 2, 3, 4, 5}
# το & κάνει την τομή δύο συνόλων.
other_set = {3, 4, 5, 6}
filled_set & other_set # => {3, 4, 5}
# και το | την ένωση
filled_set | other_set # => {1, 2, 3, 4, 5, 6}
# Η διαφορά συνόλων με το -
{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
# Τ ο ^ επιστρέφει τη συμμετρική διαφορά
{1, 2, 3, 4} ^ {2, 3, 5} # => {1, 4, 5}
# Ελεγχος γ ι α το α ν το δεξιά σύνολο είναι υπερσύνολο του δεξιού
{1, 2} >= {1, 2, 3} # => False
# Ελεγχος γ ι α το α ν το δεξιά σύνολο είναι υποσύνολο του δεξιού
{1, 2} < = {1, 2, 3} # => True
# με το in κάνουμε έλεγχο ύπαρξης στοιχείο σε σετ
2 in filled_set # => True
10 in filled_set # => False
####################################################
## 3. Έλεγχος Ροής και Iterables
####################################################
# Φτιάχνουμε μία μεταβλητή
some_var = 5
# Εδώ έχουμε ένα if statement. Η στοίχιση είναι σημαντική στην Python!
# Η σύμβαση είναι ν α χρησιμοποιούμε 4 κενά, όχι tabs.
# Τ ο παρακάτω τυπώνει "some_var is smaller than 10"
if some_var > 10:
print("some_var is totally bigger than 10.")
elif some_var < 10: # το ( else if ) - > elif μέρος είναι προαιρετικό.
print("some_var is smaller than 10.")
else: # και το else είναι προαιρετικό.
print("some_var is indeed 10.")
"""
τα for loops τρέχουν πάνω σε lists
το παρακάτω τυπώνει:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
# You can use format() to interpolate formatted strings
print("{} is a mammal".format(animal))
"""
το "range(number)" επιστρέφει ένα iterable με αριθμούς
από το μηδέν μέχρι τον δωσμένο αριθμό number (κλειστό/ανοικτό διάστημα)
Τ ο παρακάτω τυπώνει:
0
1
2
3
"""
for i in range(4):
print(i)
"""
το "range(lower, upper)" επιστρέφει ένα iterable με αριθμούς
από το lower εώς το upper (κλειστό/ανοικτό διάστημα)
το παρακάτω τυπώνει:
4
5
6
7
"""
for i in range(4, 8):
print(i)
"""
το "range(lower, upper, step)" επιστρέφει ένα iterable με αριθμούς
από το lower μέχρι το upper, με βήμα step
α ν δεν δώσουμε τιμή βήματος, το default βήμα είναι 1.
το παρακάτω τυπώνει:
4
6
"""
for i in range(4, 8, 2):
print(i)
"""
τα While loops τρέχουν μέχρι μία συνθήκη ν α γίνει ψευδής.
το παρακάτω τυπώνει:
0
1
2
3
"""
x = 0
while x < 4:
print(x)
x += 1 # Shorthand for x = x + 1
# Χειριζόμαστε εξαιρέσεις με ένα try/except block
try:
# Χρησιμοποιούμε το "raise" γ ι α ν α πετάξουμε ένα error
raise IndexError("This is an index error")
except IndexError as e:
pass # το Pass δεν κάνει τίποτα. Συνήθως κάνουμε ανάκτηση.
except (TypeError, NameError):
pass # Μπορούμε ν α χειριζόμαστε πολλές εξαιρέσεις μαζί, α ν χρειαστεί
else: # Προαιρετικό στο try/except block. Πρέπει ν α ακολουθεί όλα τα except blocks
print("All good!") # τρέχει μόνο α ν ο κώδικας στο try δεν προκαλεί εξαιρέσεις
finally: # Εκτελείται ό,τι και ν α γίνει
print("We can clean up resources here")
# Αντί γ ι α try/finally γ ι α ν α καθαρίσουμε τους πόρους, μπορούμε ν α χρησιμοποιούμε το
# with expression as target:
pass to cleanup resources you can use a with statement
with open("myfile.txt") as f:
for line in f:
print(line)
# Η Python προσφέρει μία θεμελιώδη αφαίρεση (abstraction) που λέγεται Iterable.
# iterable είναι ένα αντικείμενο που μπορεί ν α χρησιμοποιηθεί ως ακολουθία.
# Τ ο αντικείμενο που επιστρέφει η συνάρτηση range, είναι ένα iterable.
filled_dict = {"one": 1, "two": 2, "three": 3}
our_iterable = filled_dict.keys()
print(our_iterable) # => dict_keys(['one', 'two', 'three']).
# Αυτό είναι ένα αντικείμενο που υλοποιεί την iterable διεπαφή μας.
# μπορούμε ν α τρέχουμε loops πάνω του.
for i in our_iterable:
print(i) # Prints one, two, three
# Ωστόσο δεν μπορούμε ν α προσπελάσουμε τα στοιχεία του με index.
our_iterable[1] # προκαλεί a TypeError
# Ένα iterable είναι ένα αντικείμενο που ξέρει πώς ν α δημιουργήσει έναν iterator.
our_iterator = iter(our_iterable)
# Ο iterator μας είναι ένα αντικείμενο που μπορεί ν α θυμάται την κατάσταση όπως το διατρέχουμε.
# Παίρνουμε το επόμενο αντικείμενο με το "next()"
next(our_iterator) # => "one"
# Διατηρεί την κατάσταση καθώς επαναλαμβάνουμε.
next(our_iterator) # => "two"
next(our_iterator) # => "three"
# Όταν ο iterator έχει επιστρέψει όλα τα δεδομένα του, προκαλεί ένα μια εξαίρεση StopIteration.
next(our_iterator) # προκαλεί StopIteration
# Μπορείς ν α πάρεις όλα τα αντικείμενα ενός iteratior καλώντας list() πάνω του.
list(filled_dict.keys()) # => Επιστρέφει ["one", "two", "three"]
####################################################
## 4. Συναρτήσεις
####################################################
# Χρησιμποιούμε το "def" γ ι α ν α ορίσουμε νέες συναρτήσεις
def add(x, y):
print("x is {} and y is {}".format(x, y))
return x + y # επιστρέφει τιμές με την εντολή return
# Καλούμε συναρτήσεις με παραμέτρους
add(5, 6) # => τυπώνει "x is 5 and y is 6" και επιστρέφει 11
# Ένας άλλος τρόπος ν α καλέσεις συνάρτησει είναι με keyword arguments (ορίσματα λέξεις-κλειδιά)
add(y=6, x=5) # τα Keyword arguments μπορούν ν α δωθούν με οποιαδήποτε σειρά.
# Μπορείς ν α ορίσεις συναρτήσεις που δέχονται μεταβλητό πλήθος ορισμάτων
def varargs(*args):
return args
varargs(1, 2, 3) # => (1, 2, 3)
# Μπορούμε ν α ορίσουμε και συναρτήσεις που δέχονται μεταβλητό πλήθος keyword arguments
def keyword_args(**kwargs):
return kwargs
# Για ν α δούμε τι γίνεται α ν την καλέσουμε
keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
# Μπορείς ν α κάνεις και τα δύο ταυτόχρονα α ν θες
def all_the_args(*args, **kwargs):
print(args)
print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) τυπώνει:
(1, 2)
{"a": 3, "b": 4}
"""
# Όταν καλείς συναρτήσεις μπορείς ν α κάνεις και το αντίστροφο από args/kwargs!
# Χρησιμοποίησε το * γ ι α ν α επεκτείνεις tuples και χρησιμοποίησε το ** γ ι α ν α επεκτείλεις kwargs
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # ισοδύναμο με all_the_args(1, 2, 3, 4)
all_the_args(**kwargs) # ισοδύναμο με all_the_args(a=3, b=4)
all_the_args(*args, **kwargs) # ισοδύναμο με all_the_args(1, 2, 3, 4, a=3, b=4)
# Επιστρέφουμε πλειάδα τιμών (με tuple assignments)
def swap(x, y):
return y, x # Επιστρέφει πολλές τιμές ως tuple χωρίς την παρένθεση
# (Σημ.: ο ι παρενθέσεις έχουν παραλειφθεί αλλά μπορούν ν α γραφούν)
x = 1
y = 2
x, y = swap(x, y) # => x = 2, y = 1
# (x, y) = swap(x,y) # Ξανά, ο ι παρενθέσεις έχουν παραληφθεί αλλά μπορούν ν α γραφούν
# Εμβέλεια συναρτήσεων
x = 5
def set_x(num):
# Η τοπική μεταβλητή x δεν είναι η ίδια με την global μεταβλητή x
x = num # => 43
print(x) # => 43
def set_global_x(num):
global x
print(x) # => 5
x = num # η global μεταβλητή x τώρα είναι 6
print(x) # => 6
set_x(43)
set_global_x(6)
# Η Python έχει πρώτης τάξης συναρτήσεις
def create_adder(x):
def adder(y):
return x + y
return adder
add_10 = create_adder(10)
add_10(3) # => 13
# Αλλά έχει και anonymous συναρτήσεις.
(lambda x: x > 2)(3) # => True
(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
# Υπάρχουν ενσωματωμένες συναρτήσεις μεγαλύτερης τάξης
list(map(add_10, [1, 2, 3])) # => [11, 12, 13]
list(map(max, [1, 2, 3], [4, 2, 1])) # => [4, 2, 3]
list(filter(lambda x: x > 5, [3, 4, 5, 6, 7])) # => [6, 7]
# Μπορούμε ν α χρησιμοποιήσουμε list comprehensions γ ι α ωραία maps και filters
# το List comprehension αποθηκεύει την έξοδο ως μία λίστα που μπορεί και η ίδια
# ν α είναι μια εμφωλευμένη λίστα
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
# Μπορείς επίσης ν α κατασκευάσεις set και dict comprehensions.
{x for x in 'abcddeef' if x not in 'abc'} # => {'d', 'e', 'f'}
{x: x**2 for x in range(5)} # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
####################################################
## 5. Modules
####################################################
# Μπορείς ν α κάνεις import modules
import math
print(math.sqrt(16)) # => 4.0
# Μπορείς ν α πάρεις συγκεκριμένες συναρτήσεις από ένα module
from math import ceil, floor
print(ceil(3.7)) # => 4.0
print(floor(3.7)) # => 3.0
# Μπορείς ν α κάνεις import όλες τις συναρτήσεις από ένα module.
# Προσοχή: δεν προτείνεται
from math import *
# Μπορείς ν α δημιουργείς συντομογραφίες γ ι α τα ονόματα των modules
import math as m
math.sqrt(16) == m.sqrt(16) # => True
# Τ α Python modules είναι απλά αρχεία Python. Μπορείς ν α δημιουργήσεις τα δικά σ ο υ
# και ν α τα κάνεις import το όνομα του module είναι ίδιο με το όνομα του αρχείου
# μπορείς ν α βρεις ποιες συναρτήσεις και γνωρίσματα ορίζονται στο module
import math
dir(math)
# Α ν έχεις ένα Python script με όνομα math.py στον ίδιο φάκελο με το τρέχον script
# το αρχείο math.py θα φορτωθεί και όχι το built-in Python module
# Αυτό συμβαίνει επειδή τα τοπικά αρχεία έχουν προτεραιότητα έναντι των built-in
# βιβλιοθηκών της Python
####################################################
## 6. Κλάσεις - Classes
####################################################
# χρησιμοποιούμε το "class" statement γ ι α ν α δημιουργήσουμε μια κλάση
class Human:
# Ένα γνώρισμα της κλάσης. Είναι κοινό γ ι α όλα τα στιγμιότυπα αυτής.
species = "H. sapiens"
# Βασικός initializer, καλείται όταν δημιουργείται στιγμιότυπο της κλάσης.
# Σημ. ο ι διπλές κάτω παύλες πριν και μετά υποδηλώνουν αντικείμενα
# ή γνωρίσματα που χρησιμοποιούνται από την Python αλλά ζουν σε ελεγχόμενα από
# το χρήση namespaces.
# Μέθοδοι (ή αντικείμενα ή γνωρίσματα) σ α ν τα __init__ , __str__ , __repr__ κλπ
# είναι ειδικές μέθοδοι (λέγονται και dunder (double underscore) μέθοδοι)
# Δεν πρέπει ν α δηλώνεις δικές σ ο υ τέτοιες συναρτήσεις
def __init__ (self, name):
# Εκχώρησε στο attribute name του object το όρισμα
self.name = name
# Αρχικοποίησε την ιδιότητα
self._age = 0
# Μία μέθοδος στιγμιότυπου (instance method). Όλες ο ι μέθοδοι παίρνουν το
# "self" ως πρώτο όρισμα
def say(self, msg):
print("{name}: {message}".format(name=self.name, message=msg))
# Ακόμα μία instance method
def sing(self):
return 'yo... yo... microphone check... one two... one two...'
# Μία μέθοδος κλάσεις είναι κοινή ανάμεσα σε όλα τα instances.
# Καλούνται με calling class ώς πρώτο όρισμα
@classmethod
def get_species(cls):
return cls.species
# Μία στατική μέθοδος καλείται χωρίς αναφορά σε κλάση ή στιγμιότυπο
@staticmethod
def grunt():
return "*grunt*"
# Ένα property είναι ακριβώς σ α ν ένα getter.
# Μετατρέπει τη μέθοδο age σε ένα γνώρισμα (attribute) μόνο-γ ι α -ανάγνωση
# με το ίδιο όνομα.
# Δεν χρειάζεται ν α γράφουμε τετριμένους getters και setters στην Python όμως.
@property
def age(self):
return self._age
# Αυτό επιτρέπει στο property ν α γίνει set
@age .setter
def age(self, age):
self._age = age
# Αυτό επιτρέπει σε ένα property ν α διαγραφεί
@age .deleter
def age(self):
del self._age
# Όταν ο διερμηνέας της Python διαβάζει αρχείο πηγαίου κώδικα τον εκτελεί όλο.
# Αυτός ο έλεγχος του __name__ σιγουρεύει ότι αυτό το block κώδικα τρέχει μόνο
# αυτό το module είναι το κύριο πρόγραμμα (και όχι imported)
if __name__ == '__main__':
# Δημιουργούμε στιγμιότυπο κλάσης
i = Human(name="Ian")
i.say("hi") # "Ian: hi"
j = Human("Joel")
j.say("hello") # "Joel: hello"
# τα i και j είναι στιγμιότυπα του τύπου Human
# Καλούμε τη μέθοδο της κλάσης
i.say(i.get_species()) # "Ian: H. sapiens"
# Αλλάζουμε το κοινό attribute των αντικειμένων της κλάσης
Human.species = "H. neanderthalensis"
i.say(i.get_species()) # => "Ian: H. neanderthalensis"
j.say(j.get_species()) # => "Joel: H. neanderthalensis"
# Καλούμε τη static μέθοδο
print(Human.grunt()) # => "*grunt*"
# Δεν μπορούμε ν α καλέσουμε τη στατική μέθοδο με ένα στιγμιότυπο
# επειδή το i.grunt() θα βάλει αυτόματα το self (δηλαδή το αντικείμενο i) ως όρισμα
print(i.grunt()) # => TypeError: grunt() takes 0 positional arguments but 1 was given
# Ενημερώνουμε το property γ ι α αυτό το στγμιότυπο
i.age = 42
# Παίρνουμε το property
i.say(i.age) # => "Ian: 42"
j.say(j.age) # => "Joel: 0"
# Διαγράφουμε το property
del i.age
# i.age # => αυτό θα προκαλούσε AttributeError
####################################################
## 6.1 Κληρονομικότητα - Inheritance
####################################################
# Η κληρονομικότητα επιτρέπει σε νέες κλάσεις-παιδιά ν α οριστούν και ν α υιοθετήσουν
# μεθόδους και μεταβλητές από την κλάση-γονέα.
# Χρησιμοποιώντας την κλάση Human που ορίστηκε πριν ως τη βασική κλάση (ή κλάση-γονέα)
# μπορούμε ν α ορίσουμε τις κλάσεις-παιδιά Superhero, που κληρονομεί μεταβλητές όπως
# "species", "name", και "age", καθώς και μεθόδους όπως "sing" και "grunt"
# από την κλάση Human, αλλά επίσης έχει τις δικές του ξεχωριστές ιδιότητες
# Για ν α εκμεταλλευτείς το modularization κατά αρχείο, μπορείς ν α βάλεις την παραπάνω κλάση
# σε δικό της αρχείο, ας πούμε human.py
# Για ν α κάνουμε import συναρτήσεις από άλλα αρχεία χρησιμοποιούμε το παρακάτω format
# from "filename-without-extension" import "function-or-class"
from human import Human
# Προσδιόρισε την/τις parent class(es) ως παραμέτρους της κλάσης που ορίζεται
class Superhero(Human):
# Α ν η κλάση-παιδί πρέπει ν α κληρονομήσει όλους τους οεισμούς της κλάσης-γονέα
# χωρίς καμία αλλαγή, μπορείς απλά ν α γράψεις pass (και τίποτα άλλο)
# αλλά σε αυτή την περίπτωση είναι σχολιασμένο γ ι α ν α επιτρέψει τη δημιουργία
# ξεχωριστής κλάσης-παιδιού:
# pass
# Η κλάση παιδί μπορεί ν α υπερφορτώσει (override) τα attributes της κλάσης από την οποία κληρονομεί
species = 'Superhuman'
# Τ α παιδιά αυτόματα, κληρονομούν τον constructo της κλάσης-γονέα
# συμπεριλαμβανομένων των ορισμάτων, αλλά μπορείς και ν α ορίσεις πρόσθετα ορίσματα
# ή ορισμούς και ν α κάνεις override τις μεθόδους, όπως τον constructor.
# Αυτός ο constructor κληρονομεί το όρισμα "name" από την κλάση Human και
# προσθέτει τα ορίσματα "superpower" και "movie":
def __init__ (self, name, movie=False,
superpowers=["super strength", "bulletproofing"]):
# πρόσθήκη επιπλέον attributes της κλάσης:
self.fictional = True
self.movie = movie
# έχετε το ν ο υ σας τις μεταβλητές (mutable) default τιμές, καθώς είναι κοινές
self.superpowers = superpowers
# Η συνάρτηση "super" επιτρέπει την πρόσβαση στις μεθόδους της κλάσης-γονέα
# που είναι υπερφορτωμένες από το παιδί. Σε αυτή την περίπτωση τη μέθοδο __init__
# Τ ο παρακάτω καλεί τον constructor της κλάσης-γονέα:
super().__init__(name)
# υπερφόρτωση της μεθόδου sing
def sing(self):
return 'Dun, dun, DUN!'
# προσθήκη νέας μεθόδου που εφαρμόζεται σε στιγμιότυπα
def boast(self):
for power in self.superpowers:
print("I wield the power of {pow}!".format(pow=power))
if __name__ == '__main__':
sup = Superhero(name="Tick")
# Έλεγχος γ ι α το α ν το στιγμιότυπο sup ανήκει στην κλάση Human
if isinstance(sup, Human):
print('I am human')
if type(sup) is Superhero:
print('I am a superhero')
# TODO:
# Παίρνουμε το Method Resolution search Order που χρησιμοποιούν ο ι getattr() και super()
# Αυτό το attribute είναι δυναμικό και μπορεί ν α ανανεωθεί
print(Superhero.__mro__) # => (< class ' __main__ . Superhero ' > ,
# => < class ' human . Human ' > , < class ' object ' > )
# Καλούμε μέθοδο της κλάσης-γονέα, αλλά χρησιμοποιεί το δικό της attribute
print(sup.get_species()) # => Superhuman
# Καλεί την υπερφορτωμένη μέθοδο
print(sup.sing()) # => Dun, dun, DUN!
# Καλεί μέθοδο από την κλάση Human
sup.say('Spoon') # => Tick: Spoon
# Καλεί μέθοδο που υπάρχει μόνο στην κλάση Superhero
sup.boast() # => I wield the power of super strength!
# => I wield the power of bulletproofing!
# Κληρονομημένο class attribute
sup.age = 31
print(sup.age) # => 31
# Attribute που υπάρχει μόνο στην μέσα στην κλάση Superhero
print('Am I Oscar eligible? ' + str(sup.movie))
####################################################
## 6.2 Πολλαπλή Κληρονομικότητα - Multiple Inheritance
####################################################
# Ένας ακόμη ορισμός κλάσης
# bat.py
class Bat:
species = 'Baty'
def __init__ (self, can_fly=True):
self.fly = can_fly
# Αυτή η κλάση έχει επίσης μία μέθοδο say
def say(self, msg):
msg = '... ... ...'
return msg
# Κ α ι τη δική της μέθοδο sonar
def sonar(self):
return '))) ... ((('
if __name__ == '__main__':
b = Bat()
print(b.say('hello'))
print(b.fly)
# Κ α ι ορίζουμε μία ακόμα κλάση που κληρονομεί από τις κλάσεις Superhero και Bat
# superhero.py
from superhero import Superhero
from bat import Bat
# Ας πούμε αυτή την κλάση Batman
class Batman(Superhero, Bat):
def __init__ (self, *args, * *kwargs):
# Τυπικά γ α ν α κληρονομήουμε attributes πρέπει ν α καλέσουμε τη super:
# super(Batman, self).__init__(*args, **kwargs)
# Ωστόσο έχουμε ν α κάνουμε με πολλαπλή κληρονομικότητα εδώ, και το super()
# δουλεύει μόνο με την αμέσως ανώτερη κλάση στην ιεραρχία.
# Οπότε, καλούμε ρητά την __init__ γ ι α όλους τους πρόγονους
# Η χρήση των *args και * *kwargs επιτρέπει έναν καθαρό τρόπο γ ι α ν α περνάμε ορίσματα
# με κάθε κλάση-γονέα ν α "βγάζει μία φλούδα από το κρεμμύδι".
Superhero.__init__(self, 'anonymous', movie=True,
superpowers=['Wealthy'], *args, * *kwargs)
Bat.__init__(self, *args, can_fly=False, * *kwargs)
# υπερφορτώνουμε την τιμή του γνωρίσματος name
self.name = 'Sad Affleck'
def sing(self):
return 'nan nan nan nan nan batman!'
if __name__ == '__main__':
sup = Batman()
#
# Λάβε το Method Resolution search Order που χρησιμοποιείται από το getattr() και το super().
# Αυτό το attribute είναι δυναμικό και μπορεί ν α ενημερωθεί
print(Batman.__mro__) # => (< class ' __main__ . Batman ' > ,
# => < class ' superhero . Superhero ' > ,
# => < class ' human . Human ' > ,
# => < class ' bat . Bat ' > , < class ' object ' > )
# Καλεί την μέθοδο της κλάσης-πατέρα αλλά χρησιμοποιεί το attribute της δικής του κλάσης
print(sup.get_species()) # => Superhuman
# Καλεί την υπερφορτωμένη μέθοδο
print(sup.sing()) # => nan nan nan nan nan batman!
# Καλεί μέθοδο από την κλάση Human, επειδή μετράει η σειρά της κληρονομιάς
sup.say('I agree') # => Sad Affleck: I agree
# Καλεί μέθοδο που ανήκει μόνο στον δεύτερο πρόγονο
print(sup.sonar()) # => ))) ... (((
# Attribute της κληρονομημένης κλάσης
sup.age = 100
print(sup.age) # => 100
# Κληρονομούμενο attribute από τον δεύτερο πρόγονο του οποίου η default τιμή
# έχει υπερφορτωθεί.
print('Can I fly? ' + str(sup.fly)) # => Can I fly? False
####################################################
## 7. Προχωρημένα
####################################################
# Με τους Generators μπορείς ν α γράψεις τεμπέλικο κώδικα.
def double_numbers(iterable):
for i in iterable:
yield i + i
# Ο ι Generators είναι αποδοτικοί από άποψη μνήμης επειδή φορτώνουν μόνο τα δεδομένα
# που είναι αναγκαία γ ι α ν α επεξεργαστούμε την επόμενη τιμή του iterable.
# Αυτό μας επιτρέπει ν α κάνουμε πράξεις σε τιμές που υπό άλλες συνθήκες θα ήταν
# απαγορευτικά μεγάλες.
for i in double_numbers(range(1, 900000000)): # το `range` είναι ένας generator.
print(i)
if i >= 30:
break
# Όπως μπορείς ν α δημιουργήσεις list comprehension, έτσι μπορείς ν α δημιουργήσεις και
# generator comprehensions
values = (-x for x in [1,2,3,4,5])
for x in values:
print(x) # τυπώνει -1 -2 -3 -4 -5 στο console/terminal
# Μπορείς επίσης ν α μετατρέψεις ένα generator comprehension απευθείας σε λίστα.
values = (-x for x in [1,2,3,4,5])
gen_to_list = list(values)
print(gen_to_list) # => [-1, -2, -3, -4, -5]
# Decorators
# σε αυτό το παράδειγμα το `beg` τυλίγει το `say`. Α ν το say_please είναι True τότε
# θα αλλάξει το μήνυμα που επιστρέφεται.
from functools import wraps
def beg(target_function):
@wraps (target_function)
def wrapper(*args, **kwargs):
msg, say_please = target_function(*args, **kwargs)
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
return wrapper
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
print(say()) # Can you buy me a beer?
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
```
## Έτοιμοι γ ι α περισσότερα?
### Δωρεάν Online
* [Automate the Boring Stuff with Python ](https://automatetheboringstuff.com )
* [Ideas for Python Projects ](http://pythonpracticeprojects.com )
* [The Official Docs ](http://docs.python.org/3/ )
2024-04-26 11:48:54 +03:00
* [Hitchhiker's Guide to Python ](http://docs.python-guide.org/ )
2019-10-19 16:01:29 +03:00
* [Python Course ](http://www.python-course.eu/index.php )
* [First Steps With Python ](https://realpython.com/learn/python-first-steps/ )
* [A curated list of awesome Python frameworks, libraries and software ](https://github.com/vinta/awesome-python )
2024-04-26 11:48:54 +03:00
* [Official Style Guide for Python ](https://peps.python.org/pep-0008/ )
2019-10-19 16:01:29 +03:00
* [Python 3 Computer Science Circles ](http://cscircles.cemc.uwaterloo.ca/ )
* [Dive Into Python 3 ](http://www.diveintopython3.net/index.html )