diff --git a/go.html.markdown b/go.html.markdown
index c85209e0..bedc3042 100644
--- a/go.html.markdown
+++ b/go.html.markdown
@@ -12,7 +12,7 @@ contributors:
- ["Alexej Friesen", "https://github.com/heyalexej"]
---
-Go was created out of the need to get work done. It's not the latest trend
+Go was created out of the need to get work done. It's not the latest trend
in computer science, but it is the newest fastest way to solve real-world
problems.
@@ -26,7 +26,7 @@ Go comes with a great standard library and an enthusiastic community.
```go
// Single line comment
/* Multi-
- line comment */
+ line comment */
// A package clause starts every source file.
// Main is a special name declaring an executable rather than a library.
@@ -41,8 +41,8 @@ import (
"strconv" // String conversions.
)
-// A function definition. Main is special. It is the entry point for the
-// executable program. Love it or hate it, Go uses brace brackets.
+// A function definition. Main is special. It is the entry point for the
+// executable program. Love it or hate it, Go uses brace brackets.
func main() {
// Println outputs a line to stdout.
// Qualify it with the package name, fmt.
@@ -77,7 +77,7 @@ func learnTypes() {
s2 := `A "raw" string literal
can include line breaks.` // Same string type.
- // Non-ASCII literal. Go source is UTF-8.
+ // Non-ASCII literal. Go source is UTF-8.
g := 'Σ' // rune type, an alias for int32, holds a unicode code point.
f := 3.14195 // float64, an IEEE-754 64-bit floating point number.
@@ -94,9 +94,9 @@ can include line breaks.` // Same string type.
var a4 [4]int // An array of 4 ints, initialized to all 0.
a3 := [...]int{3, 1, 5} // An array of 3 ints, initialized as shown.
- // Slices have dynamic size. Arrays and slices each have advantages
+ // Slices have dynamic size. Arrays and slices each have advantages
// but use cases for slices are much more common.
- s3 := []int{4, 5, 9} // Compare to a3. No ellipsis here.
+ s3 := []int{4, 5, 9} // Compare to a3. No ellipsis here.
s4 := make([]int, 4) // Allocates slice of 4 ints, initialized to all 0.
var d2 [][]float64 // Declaration only, nothing allocated here.
bs := []byte("a slice") // Type conversion syntax.
@@ -116,7 +116,7 @@ can include line breaks.` // Same string type.
fmt.Println(s) // Updated slice is now [1 2 3 4 5 6 7 8 9]
p, q := learnMemory() // Declares p, q to be type pointer to int.
- fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
+ fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
// Maps are a dynamically growable associative array type, like the
// hash or dictionary types of some other languages.
@@ -142,7 +142,7 @@ func learnNamedReturns(x, y int) (z int) {
return // z is implicit here, because we named it earlier.
}
-// Go is fully garbage collected. It has pointers but no pointer arithmetic.
+// Go is fully garbage collected. It has pointers but no pointer arithmetic.
// You can make a mistake with a nil pointer, but not by incrementing a pointer.
func learnMemory() (p, q *int) {
// Named return values p and q have type pointer to int.
@@ -220,7 +220,7 @@ func learnFlowControl() {
func(a, b int) int {
return (a + b) * 2
}(10, 2)) // Called with args 10 and 2
- // => Add + double two numbers: 24
+ // => Add + double two numbers: 24
// When you need it, you'll love it.
goto love
@@ -267,7 +267,7 @@ type pair struct {
x, y int
}
-// Define a method on type pair. Pair now implements Stringer.
+// Define a method on type pair. Pair now implements Stringer.
func (p pair) String() string { // p is called the "receiver"
// Sprintf is another public function in package fmt.
// Dot syntax references fields of p.
@@ -275,13 +275,13 @@ func (p pair) String() string { // p is called the "receiver"
}
func learnInterfaces() {
- // Brace syntax is a "struct literal." It evaluates to an initialized
- // struct. The := syntax declares and initializes p to this struct.
+ // Brace syntax is a "struct literal". It evaluates to an initialized
+ // struct. The := syntax declares and initializes p to this struct.
p := pair{3, 4}
fmt.Println(p.String()) // Call String method of p, of type pair.
var i Stringer // Declare i of interface type Stringer.
i = p // Valid because pair implements Stringer
- // Call String method of i, of type Stringer. Output same as above.
+ // Call String method of i, of type Stringer. Output same as above.
fmt.Println(i.String())
// Functions in the fmt package call the String method to ask an object
@@ -319,7 +319,7 @@ func learnErrorHandling() {
// prints 'strconv.ParseInt: parsing "non-int": invalid syntax'
fmt.Println(err)
}
- // We'll revisit interfaces a little later. Meanwhile,
+ // We'll revisit interfaces a little later. Meanwhile,
learnConcurrency()
}
@@ -330,12 +330,12 @@ func inc(i int, c chan int) {
// We'll use inc to increment some numbers concurrently.
func learnConcurrency() {
- // Same make function used earlier to make a slice. Make allocates and
+ // Same make function used earlier to make a slice. Make allocates and
// initializes slices, maps, and channels.
c := make(chan int)
- // Start three concurrent goroutines. Numbers will be incremented
+ // Start three concurrent goroutines. Numbers will be incremented
// concurrently, perhaps in parallel if the machine is capable and
- // properly configured. All three send to the same channel.
+ // properly configured. All three send to the same channel.
go inc(0, c) // go is a statement that starts a new goroutine.
go inc(10, c)
go inc(-805, c)
@@ -348,7 +348,7 @@ func learnConcurrency() {
go func() { c <- 84 }() // Start a new goroutine just to send a value.
go func() { cs <- "wordy" }() // Again, for cs this time.
// Select has syntax like a switch statement but each case involves
- // a channel operation. It selects a case at random out of the cases
+ // a channel operation. It selects a case at random out of the cases
// that are ready to communicate.
select {
case i := <-c: // The value received can be assigned to a variable,
@@ -358,7 +358,7 @@ func learnConcurrency() {
case <-ccs: // Empty channel, not ready for communication.
fmt.Println("didn't happen.")
}
- // At this point a value was taken from either c or cs. One of the two
+ // At this point a value was taken from either c or cs. One of the two
// goroutines started above has completed, the other will remain blocked.
learnWebProgramming() // Go does it. You want to do it too.
@@ -397,15 +397,15 @@ func requestServer() {
The root of all things Go is the [official Go web site](http://golang.org/).
There you can follow the tutorial, play interactively, and read lots.
-The language definition itself is highly recommended. It's easy to read
+The language definition itself is highly recommended. It's easy to read
and amazingly short (as language definitions go these days.)
You can play around with the code on [Go playground](https://play.golang.org/p/tnWMjr16Mm). Try to change it and run it from your browser! Note that you can use [https://play.golang.org](https://play.golang.org) as a [REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) to test things and code in your browser, without even installing Go.
On the reading list for students of Go is the [source code to the standard
-library](http://golang.org/src/pkg/). Comprehensively documented, it
+library](http://golang.org/src/pkg/). Comprehensively documented, it
demonstrates the best of readable and understandable Go, Go style, and Go
-idioms. Or you can click on a function name in [the
+idioms. Or you can click on a function name in [the
documentation](http://golang.org/pkg/) and the source code comes up!
Another great resource to learn Go is [Go by example](https://gobyexample.com/).