mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-11-26 09:21:00 +03:00
Merge b471f2179a
into 3c1b4e752d
This commit is contained in:
commit
40d4200410
106
spark.html.markdown
Normal file
106
spark.html.markdown
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
---
|
||||||
|
language: Spark
|
||||||
|
category: tool
|
||||||
|
tool: Spark
|
||||||
|
filename: learnspark-en.spark
|
||||||
|
contributors:
|
||||||
|
- ["Scronge", "https://github.com/Scronge"]
|
||||||
|
---
|
||||||
|
|
||||||
|
[Spark](https://spark.apache.org/) is an open-source distributed data processing framework that enables large-scale data processing across clusters. This guide covers the basics of **Apache Spark** using PySpark, the Python API.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Setting Up Spark
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder \
|
||||||
|
.appName("RealWorldExampleApp") \
|
||||||
|
.getOrCreate()
|
||||||
|
|
||||||
|
# Working with Larger DataFrames
|
||||||
|
# Sample data for a retail dataset with multiple columns for complex queries
|
||||||
|
data = [
|
||||||
|
("Alice", "Electronics", 30, 200),
|
||||||
|
("Bob", "Clothing", 40, 150),
|
||||||
|
("Carol", "Electronics", 25, 300),
|
||||||
|
("Dave", "Home Goods", 35, 100),
|
||||||
|
("Eve", "Clothing", 28, 80),
|
||||||
|
("Frank", "Home Goods", 40, 120)
|
||||||
|
]
|
||||||
|
columns = ["Name", "Category", "Age", "PurchaseAmount"]
|
||||||
|
|
||||||
|
df = spark.createDataFrame(data, columns)
|
||||||
|
df.show()
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
# | Name| Category|Age|PurchaseAmount|
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
# |Alice|Electronics| 30| 200|
|
||||||
|
# | Bob| Clothing| 40| 150|
|
||||||
|
# |Carol|Electronics| 25| 300|
|
||||||
|
# | Dave| Home Goods| 35| 100|
|
||||||
|
# | Eve| Clothing| 28| 80|
|
||||||
|
# |Frank| Home Goods| 40| 120|
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
|
||||||
|
# Transformations and Actions
|
||||||
|
|
||||||
|
# Filtering data to select customers over 30 with purchases above $100
|
||||||
|
filtered_df = df.filter((df.Age > 30) & (df.PurchaseAmount > 100))
|
||||||
|
filtered_df.show()
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
# | Name| Category|Age|PurchaseAmount|
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
# | Bob| Clothing| 40| 150|
|
||||||
|
# |Frank| Home Goods| 40| 120|
|
||||||
|
# +-----+-----------+---+--------------+
|
||||||
|
|
||||||
|
# Grouping and Aggregations
|
||||||
|
# Calculate total purchases by category
|
||||||
|
category_totals = df.groupBy("Category").sum("PurchaseAmount")
|
||||||
|
category_totals.show()
|
||||||
|
# +-----------+------------------+
|
||||||
|
# | Category|sum(PurchaseAmount)|
|
||||||
|
# +-----------+------------------+
|
||||||
|
# |Electronics| 500|
|
||||||
|
# | Clothing| 230|
|
||||||
|
# | Home Goods| 220|
|
||||||
|
# +-----------+------------------+
|
||||||
|
|
||||||
|
# SQL Queries
|
||||||
|
|
||||||
|
# Registering DataFrame as a SQL temporary view
|
||||||
|
df.createOrReplaceTempView("customers")
|
||||||
|
high_spenders = spark.sql("SELECT Name, Category, PurchaseAmount FROM customers WHERE PurchaseAmount > 100")
|
||||||
|
high_spenders.show()
|
||||||
|
# +-----+-----------+--------------+
|
||||||
|
# | Name| Category|PurchaseAmount|
|
||||||
|
# +-----+-----------+--------------+
|
||||||
|
# |Alice|Electronics| 200|
|
||||||
|
# | Bob| Clothing| 150|
|
||||||
|
# |Carol|Electronics| 300|
|
||||||
|
# |Frank| Home Goods| 120|
|
||||||
|
# +-----+-----------+--------------+
|
||||||
|
|
||||||
|
# Reading and Writing Files
|
||||||
|
|
||||||
|
# Reading from CSV with additional options
|
||||||
|
csv_df = spark.read.csv("path/to/large_retail_data.csv", header=True, inferSchema=True, sep=",")
|
||||||
|
csv_df.show(5) # Display only first 5 rows for preview
|
||||||
|
|
||||||
|
# Writing DataFrame to Parquet format for optimized storage and access
|
||||||
|
df.write.parquet("output/retail_data")
|
||||||
|
|
||||||
|
# RDD Basics
|
||||||
|
|
||||||
|
# Creating an RDD and performing complex transformations
|
||||||
|
sales_data = [(1, 100), (2, 150), (3, 200), (4, 250)]
|
||||||
|
rdd = spark.sparkContext.parallelize(sales_data)
|
||||||
|
|
||||||
|
# Transformations to calculate discounts for each sale
|
||||||
|
discounted_sales_rdd = rdd.map(lambda x: (x[0], x[1] * 0.9))
|
||||||
|
print(discounted_sales_rdd.collect())
|
||||||
|
# Output: [(1, 90.0), (2, 135.0), (3, 180.0), (4, 225.0)]
|
||||||
|
|
||||||
|
# Ending the Spark Session
|
||||||
|
|
||||||
|
spark.stop()
|
Loading…
Reference in New Issue
Block a user