mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-11-24 06:53:08 +03:00
Merge pull request #1089 from geoffliu/master
[C++/en] Templates and gotchas
This commit is contained in:
commit
54b38b293f
@ -432,6 +432,84 @@ int main () {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////
|
||||
// Templates
|
||||
/////////////////////
|
||||
|
||||
// Templates in C++ are mostly used for generic programming, though they are
|
||||
// much more powerful than generics constructs in other languages. It also
|
||||
// supports explicit and partial specialization, functional-style type classes,
|
||||
// and also it's Turing-complete.
|
||||
|
||||
// We start with the kind of generic programming you might be familiar with. To
|
||||
// define a class or function that takes a type parameter:
|
||||
template<class T>
|
||||
class Box {
|
||||
// In this class, T can be used as any other type.
|
||||
void insert(const T&) { ... }
|
||||
};
|
||||
|
||||
// During compilation, the compiler actually generates copies of each template
|
||||
// with parameters substituted, and so the full definition of the class must be
|
||||
// present at each invocation. This is why you will see template classes defined
|
||||
// entirely in header files.
|
||||
|
||||
// To instantiate a template class on the stack:
|
||||
Box<int> intBox;
|
||||
|
||||
// and you can use it as you would expect:
|
||||
intBox.insert(123);
|
||||
|
||||
// You can, of course, nest templates:
|
||||
Box<Box<int> > boxOfBox;
|
||||
boxOfBox.insert(intBox);
|
||||
|
||||
// Up until C++11, you muse place a space between the two '>'s, otherwise '>>'
|
||||
// will be parsed as the right shift operator.
|
||||
|
||||
// You will sometimes see
|
||||
// template<typename T>
|
||||
// instead. The 'class' keyword and 'typename' keyword are _mostly_
|
||||
// interchangeable in this case. For full explanation, see
|
||||
// http://en.wikipedia.org/wiki/Typename
|
||||
// (yes, that keyword has its own Wikipedia page).
|
||||
|
||||
// Similarly, a template function:
|
||||
template<class T>
|
||||
void barkThreeTimes(const T& input)
|
||||
{
|
||||
input.bark();
|
||||
input.bark();
|
||||
input.bark();
|
||||
}
|
||||
|
||||
// Notice that nothing is specified about the type parameters here. The compiler
|
||||
// will generate and then type-check every invocation of the template, so the
|
||||
// above function works with any type 'T' that has a const 'bark' method!
|
||||
|
||||
Dog fluffy;
|
||||
fluffy.setName("Fluffy")
|
||||
barkThreeTimes(fluffy); // Prints "Fluffy barks" three times.
|
||||
|
||||
// Template parameters don't have to be classes:
|
||||
template<int Y>
|
||||
void printMessage() {
|
||||
cout << "Learn C++ in " << Y << " minutes!" << endl;
|
||||
}
|
||||
|
||||
// And you can explicitly specialize templates for more efficient code. Of
|
||||
// course, most real-world uses of specialization are not as trivial as this.
|
||||
// Note that you still need to declare the function (or class) as a template
|
||||
// even if you explicitly specified all parameters.
|
||||
template<>
|
||||
void printMessage<10>() {
|
||||
cout << "Learn C++ faster in only 10 minutes!" << endl;
|
||||
}
|
||||
|
||||
printMessage<20>(); // Prints "Learn C++ in 20 minutes!"
|
||||
printMessage<10>(); // Prints "Learn C++ faster in only 10 minutes!"
|
||||
|
||||
|
||||
/////////////////////
|
||||
// Exception Handling
|
||||
/////////////////////
|
||||
@ -585,6 +663,54 @@ void doSomethingWithAFile(const std::string& filename)
|
||||
// vector (i.e. self-resizing array), hash maps, and so on
|
||||
// all automatically destroy their contents when they fall out of scope.
|
||||
// - Mutexes using lock_guard and unique_lock
|
||||
|
||||
|
||||
/////////////////////
|
||||
// Fun stuff
|
||||
/////////////////////
|
||||
|
||||
// Aspects of C++ that may be surprising to newcomers (and even some veterans).
|
||||
// This section is, unfortunately, wildly incomplete; C++ is one of the easiest
|
||||
// languages with which to shoot yourself in the foot.
|
||||
|
||||
// You can override private methods!
|
||||
class Foo {
|
||||
virtual void bar();
|
||||
};
|
||||
class FooSub : public Foo {
|
||||
virtual void bar(); // overrides Foo::bar!
|
||||
};
|
||||
|
||||
|
||||
// 0 == false == NULL (most of the time)!
|
||||
bool* pt = new bool;
|
||||
*pt = 0; // Sets the value points by 'pt' to false.
|
||||
pt = 0; // Sets 'pt' to the null pointer. Both lines compile without warnings.
|
||||
|
||||
// nullptr is supposed to fix some of that issue:
|
||||
int* pt2 = new int;
|
||||
*pt2 = nullptr; // Doesn't compile
|
||||
pt2 = nullptr; // Sets pt2 to null.
|
||||
|
||||
// But somehow 'bool' type is an exception (this is to make `if (ptr)` compile).
|
||||
*pt = nullptr; // This still compiles, even though '*pt' is a bool!
|
||||
|
||||
|
||||
// '=' != '=' != '='!
|
||||
// Calls Foo::Foo(const Foo&) or some variant copy constructor.
|
||||
Foo f2;
|
||||
Foo f1 = f2;
|
||||
|
||||
// Calls Foo::Foo(const Foo&) or variant, but only copies the 'Foo' part of
|
||||
// 'fooSub'. Any extra members of 'fooSub' are discarded. This sometimes
|
||||
// horrifying behavior is called "object slicing."
|
||||
FooSub fooSub;
|
||||
Foo f1 = fooSub;
|
||||
|
||||
// Calls Foo::operator=(Foo&) or variant.
|
||||
Foo f1;
|
||||
f1 = f2;
|
||||
|
||||
```
|
||||
Futher Reading:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user