mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-11-27 13:32:56 +03:00
Merge pull request #389 from astrieanna/julia-revise
[julia/en] Revised Julia in Y Minutes
This commit is contained in:
commit
661d9481c8
@ -8,7 +8,7 @@ filename: learnjulia.jl
|
|||||||
Julia is a new homoiconic functional language focused on technical computing.
|
Julia is a new homoiconic functional language focused on technical computing.
|
||||||
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
||||||
|
|
||||||
This is based on the current development version of Julia, as of June 29th, 2013.
|
This is based on the current development version of Julia, as of October 18th, 2013.
|
||||||
|
|
||||||
```ruby
|
```ruby
|
||||||
|
|
||||||
@ -20,20 +20,20 @@ This is based on the current development version of Julia, as of June 29th, 2013
|
|||||||
|
|
||||||
# Everything in Julia is a expression.
|
# Everything in Julia is a expression.
|
||||||
|
|
||||||
# You have numbers
|
# There are several basic types of numbers.
|
||||||
3 #=> 3 (Int64)
|
3 #=> 3 (Int64)
|
||||||
3.2 #=> 3.2 (Float64)
|
3.2 #=> 3.2 (Float64)
|
||||||
2 + 1im #=> 2 + 1im (Complex{Int64})
|
2 + 1im #=> 2 + 1im (Complex{Int64})
|
||||||
2//3 #=> 2//3 (Rational{Int64})
|
2//3 #=> 2//3 (Rational{Int64})
|
||||||
|
|
||||||
# Math is what you would expect
|
# All of the normal infix operators are available.
|
||||||
1 + 1 #=> 2
|
1 + 1 #=> 2
|
||||||
8 - 1 #=> 7
|
8 - 1 #=> 7
|
||||||
10 * 2 #=> 20
|
10 * 2 #=> 20
|
||||||
35 / 5 #=> 7.0
|
35 / 5 #=> 7.0
|
||||||
|
5 / 2 #=> 2.5 # dividing an Int by an Int always results in a Float
|
||||||
|
div(5, 2) #=> 2 # for a truncated result, use div
|
||||||
5 \ 35 #=> 7.0
|
5 \ 35 #=> 7.0
|
||||||
5 / 2 #=> 2.5
|
|
||||||
div(5, 2) #=> 2
|
|
||||||
2 ^ 2 #=> 4 # power, not bitwise xor
|
2 ^ 2 #=> 4 # power, not bitwise xor
|
||||||
12 % 10 #=> 2
|
12 % 10 #=> 2
|
||||||
|
|
||||||
@ -77,11 +77,13 @@ false
|
|||||||
# Strings are created with "
|
# Strings are created with "
|
||||||
"This is a string."
|
"This is a string."
|
||||||
|
|
||||||
# Character literals written with '
|
# Character literals are written with '
|
||||||
'a'
|
'a'
|
||||||
|
|
||||||
# A string can be treated like a list of characters
|
# A string can be indexed like an array of characters
|
||||||
"This is a string"[1] #=> 'T' # Julia indexes from 1
|
"This is a string"[1] #=> 'T' # Julia indexes from 1
|
||||||
|
# However, this is will not work well for UTF8 strings,
|
||||||
|
# so iterating over strings is reccommended (map, for loops, etc).
|
||||||
|
|
||||||
# $ can be used for string interpolation:
|
# $ can be used for string interpolation:
|
||||||
"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4"
|
"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4"
|
||||||
@ -94,10 +96,10 @@ false
|
|||||||
## 2. Variables and Collections
|
## 2. Variables and Collections
|
||||||
####################################################
|
####################################################
|
||||||
|
|
||||||
# Printing is pretty easy
|
# Printing is easy
|
||||||
println("I'm Julia. Nice to meet you!")
|
println("I'm Julia. Nice to meet you!")
|
||||||
|
|
||||||
# No need to declare variables before assigning to them.
|
# You don't declare variables before assigning to them.
|
||||||
some_var = 5 #=> 5
|
some_var = 5 #=> 5
|
||||||
some_var #=> 5
|
some_var #=> 5
|
||||||
|
|
||||||
@ -108,12 +110,14 @@ catch e
|
|||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Variable name start with a letter. You can use uppercase letters, digits,
|
# Variable names start with a letter.
|
||||||
# and exclamation points as well after the initial alphabetic character.
|
# After that, you can use letters, digits, underscores, and exclamation points.
|
||||||
SomeOtherVar123! = 6 #=> 6
|
SomeOtherVar123! = 6 #=> 6
|
||||||
|
|
||||||
# You can also use unicode characters
|
# You can also use unicode characters
|
||||||
☃ = 8 #=> 8
|
☃ = 8 #=> 8
|
||||||
|
# These are especially handy for mathematical notation
|
||||||
|
2 * π #=> 6.283185307179586
|
||||||
|
|
||||||
# A note on naming conventions in Julia:
|
# A note on naming conventions in Julia:
|
||||||
#
|
#
|
||||||
@ -158,6 +162,10 @@ a[1] #=> 1 # remember that Julia indexes from 1, not 0!
|
|||||||
# indexing expression
|
# indexing expression
|
||||||
a[end] #=> 6
|
a[end] #=> 6
|
||||||
|
|
||||||
|
# we also have shift and unshift
|
||||||
|
shift!(a) #=> 1 and a is now [2,4,3,4,5,6]
|
||||||
|
unshift!(a,7) #=> [7,2,4,3,4,5,6]
|
||||||
|
|
||||||
# Function names that end in exclamations points indicate that they modify
|
# Function names that end in exclamations points indicate that they modify
|
||||||
# their argument.
|
# their argument.
|
||||||
arr = [5,4,6] #=> 3-element Int64 Array: [5,4,6]
|
arr = [5,4,6] #=> 3-element Int64 Array: [5,4,6]
|
||||||
@ -182,23 +190,24 @@ a = [1:5] #=> 5-element Int64 Array: [1,2,3,4,5]
|
|||||||
# You can look at ranges with slice syntax.
|
# You can look at ranges with slice syntax.
|
||||||
a[1:3] #=> [1, 2, 3]
|
a[1:3] #=> [1, 2, 3]
|
||||||
a[2:] #=> [2, 3, 4, 5]
|
a[2:] #=> [2, 3, 4, 5]
|
||||||
|
a[2:end] #=> [2, 3, 4, 5]
|
||||||
|
|
||||||
# Remove arbitrary elements from a list with splice!
|
# Remove elements from an array by index with splice!
|
||||||
arr = [3,4,5]
|
arr = [3,4,5]
|
||||||
splice!(arr,2) #=> 4 ; arr is now [3,5]
|
splice!(arr,2) #=> 4 ; arr is now [3,5]
|
||||||
|
|
||||||
# Concatenate lists with append!
|
# Concatenate lists with append!
|
||||||
b = [1,2,3]
|
b = [1,2,3]
|
||||||
append!(a,b) # Now a is [1, 3, 4, 5, 1, 2, 3]
|
append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
|
||||||
|
|
||||||
# Check for existence in a list with contains
|
# Check for existence in a list with in
|
||||||
contains(a,1) #=> true
|
in(a,1) #=> true
|
||||||
|
|
||||||
# Examine the length with length
|
# Examine the length with length
|
||||||
length(a) #=> 7
|
length(a) #=> 8
|
||||||
|
|
||||||
# Tuples are immutable.
|
# Tuples are immutable.
|
||||||
tup = (1, 2, 3) #=>(1,2,3) # an (Int64,Int64,Int64) tuple.
|
tup = (1, 2, 3) #=> (1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||||
tup[1] #=> 1
|
tup[1] #=> 1
|
||||||
try:
|
try:
|
||||||
tup[0] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
tup[0] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
||||||
@ -209,22 +218,26 @@ end
|
|||||||
# Many list functions also work on tuples
|
# Many list functions also work on tuples
|
||||||
length(tup) #=> 3
|
length(tup) #=> 3
|
||||||
tup[1:2] #=> (1,2)
|
tup[1:2] #=> (1,2)
|
||||||
contains(tup,2) #=> true
|
in(tup,2) #=> true
|
||||||
|
|
||||||
# You can unpack tuples into variables
|
# You can unpack tuples into variables
|
||||||
a, b, c = (1, 2, 3) #=> (1,2,3) # a is now 1, b is now 2 and c is now 3
|
a, b, c = (1, 2, 3) #=> (1,2,3) # a is now 1, b is now 2 and c is now 3
|
||||||
|
|
||||||
# Tuples are created by default if you leave out the parentheses
|
# Tuples are created even if you leave out the parentheses
|
||||||
d, e, f = 4, 5, 6 #=> (4,5,6)
|
d, e, f = 4, 5, 6 #=> (4,5,6)
|
||||||
|
|
||||||
# Now look how easy it is to swap two values
|
# A 1-element tuple is distinct from the value it contains
|
||||||
|
(1,) == 1 #=> false
|
||||||
|
(1) == 1 #=> true
|
||||||
|
|
||||||
|
# Look how easy it is to swap two values
|
||||||
e, d = d, e #=> (5,4) # d is now 5 and e is now 4
|
e, d = d, e #=> (5,4) # d is now 5 and e is now 4
|
||||||
|
|
||||||
|
|
||||||
# Dictionaries store mappings
|
# Dictionaries store mappings
|
||||||
empty_dict = Dict() #=> Dict{Any,Any}()
|
empty_dict = Dict() #=> Dict{Any,Any}()
|
||||||
|
|
||||||
# Here is a prefilled dictionary
|
# You can create a dictionary using a literal
|
||||||
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
|
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
|
||||||
# => Dict{ASCIIString,Int64}
|
# => Dict{ASCIIString,Int64}
|
||||||
|
|
||||||
@ -241,31 +254,35 @@ values(filled_dict)
|
|||||||
#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
||||||
# Note - Same as above regarding key ordering.
|
# Note - Same as above regarding key ordering.
|
||||||
|
|
||||||
# Check for existence of keys in a dictionary with contains, haskey
|
# Check for existence of keys in a dictionary with in, haskey
|
||||||
contains(filled_dict, ("one", 1)) #=> true
|
in(filled_dict, ("one", 1)) #=> true
|
||||||
contains(filled_dict, ("two", 3)) #=> false
|
in(filled_dict, ("two", 3)) #=> false
|
||||||
haskey(filled_dict, "one") #=> true
|
haskey(filled_dict, "one") #=> true
|
||||||
haskey(filled_dict, 1) #=> false
|
haskey(filled_dict, 1) #=> false
|
||||||
|
|
||||||
# Trying to look up a non-existing key will raise an error
|
# Trying to look up a non-existant key will raise an error
|
||||||
try
|
try
|
||||||
filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489
|
filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
# Use get method to avoid the error
|
# Use the get method to avoid that error by providing a default value
|
||||||
# get(dictionary,key,default_value)
|
# get(dictionary,key,default_value)
|
||||||
get(filled_dict,"one",4) #=> 1
|
get(filled_dict,"one",4) #=> 1
|
||||||
get(filled_dict,"four",4) #=> 4
|
get(filled_dict,"four",4) #=> 4
|
||||||
|
|
||||||
# Sets store sets
|
# Use Sets to represent collections of unordered, unique values
|
||||||
empty_set = Set() #=> Set{Any}()
|
empty_set = Set() #=> Set{Any}()
|
||||||
# Initialize a set with a bunch of values
|
# Initialize a set with values
|
||||||
filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4)
|
filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4)
|
||||||
|
|
||||||
# Add more items to a set
|
# Add more values to a set
|
||||||
add!(filled_set,5) #=> Set{Int64}(5,4,2,3,1)
|
push!(filled_set,5) #=> Set{Int64}(5,4,2,3,1)
|
||||||
|
|
||||||
|
# Check if the values are in the set
|
||||||
|
in(filled_set,2) #=> true
|
||||||
|
in(filled_set,10) #=> false
|
||||||
|
|
||||||
# There are functions for set intersection, union, and difference.
|
# There are functions for set intersection, union, and difference.
|
||||||
other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3)
|
other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3)
|
||||||
@ -273,10 +290,6 @@ intersect(filled_set, other_set) #=> Set{Int64}(3,4,5)
|
|||||||
union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6)
|
union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6)
|
||||||
setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4)
|
setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4)
|
||||||
|
|
||||||
# Check for existence in a set with contains
|
|
||||||
contains(filled_set,2) #=> true
|
|
||||||
contains(filled_set,10) #=> false
|
|
||||||
|
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
## 3. Control Flow
|
## 3. Control Flow
|
||||||
@ -285,8 +298,7 @@ contains(filled_set,10) #=> false
|
|||||||
# Let's make a variable
|
# Let's make a variable
|
||||||
some_var = 5
|
some_var = 5
|
||||||
|
|
||||||
# Here is an if statement. Indentation is NOT meaningful in Julia.
|
# Here is an if statement. Indentation is not meaningful in Julia.
|
||||||
# prints "some var is smaller than 10"
|
|
||||||
if some_var > 10
|
if some_var > 10
|
||||||
println("some_var is totally bigger than 10.")
|
println("some_var is totally bigger than 10.")
|
||||||
elseif some_var < 10 # This elseif clause is optional.
|
elseif some_var < 10 # This elseif clause is optional.
|
||||||
@ -294,12 +306,22 @@ elseif some_var < 10 # This elseif clause is optional.
|
|||||||
else # The else clause is optional too.
|
else # The else clause is optional too.
|
||||||
println("some_var is indeed 10.")
|
println("some_var is indeed 10.")
|
||||||
end
|
end
|
||||||
|
#=> prints "some var is smaller than 10"
|
||||||
|
|
||||||
|
|
||||||
# For loops iterate over iterables, such as ranges, lists, sets, dicts, strings.
|
# For loops iterate over iterables.
|
||||||
|
# Iterable types include Range, Array, Set, Dict, and String.
|
||||||
for animal=["dog", "cat", "mouse"]
|
for animal=["dog", "cat", "mouse"]
|
||||||
# You can use $ to interpolate into strings
|
println("$animal is a mammal")
|
||||||
|
# You can use $ to interpolate variables or expression into strings
|
||||||
|
end
|
||||||
|
# prints:
|
||||||
|
# dog is a mammal
|
||||||
|
# cat is a mammal
|
||||||
|
# mouse is a mammal
|
||||||
|
|
||||||
|
# You can use 'in' instead of '='.
|
||||||
|
for animal in ["dog", "cat", "mouse"]
|
||||||
println("$animal is a mammal")
|
println("$animal is a mammal")
|
||||||
end
|
end
|
||||||
# prints:
|
# prints:
|
||||||
@ -307,31 +329,33 @@ end
|
|||||||
# cat is a mammal
|
# cat is a mammal
|
||||||
# mouse is a mammal
|
# mouse is a mammal
|
||||||
|
|
||||||
# You can use in instead of =, if you want.
|
|
||||||
for animal in ["dog", "cat", "mouse"]
|
|
||||||
println("$animal is a mammal")
|
|
||||||
end
|
|
||||||
|
|
||||||
for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
||||||
println("$(a[1]) is $(a[2])")
|
println("$(a[1]) is a $(a[2])")
|
||||||
end
|
end
|
||||||
|
# prints:
|
||||||
|
# dog is a mammal
|
||||||
|
# cat is a mammal
|
||||||
|
# mouse is a mammal
|
||||||
|
|
||||||
for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
||||||
println("$k is $v")
|
println("$k is a $v")
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
# While loops go until a condition is no longer met.
|
|
||||||
# prints:
|
# prints:
|
||||||
# 0
|
# dog is a mammal
|
||||||
# 1
|
# cat is a mammal
|
||||||
# 2
|
# mouse is a mammal
|
||||||
# 3
|
|
||||||
|
# While loops loop while a condition is true
|
||||||
x = 0
|
x = 0
|
||||||
while x < 4
|
while x < 4
|
||||||
println(x)
|
println(x)
|
||||||
x += 1 # Shorthand for x = x + 1
|
x += 1 # Shorthand for x = x + 1
|
||||||
end
|
end
|
||||||
|
# prints:
|
||||||
|
# 0
|
||||||
|
# 1
|
||||||
|
# 2
|
||||||
|
# 3
|
||||||
|
|
||||||
# Handle exceptions with a try/except block
|
# Handle exceptions with a try/except block
|
||||||
try
|
try
|
||||||
@ -346,11 +370,14 @@ end
|
|||||||
## 4. Functions
|
## 4. Functions
|
||||||
####################################################
|
####################################################
|
||||||
|
|
||||||
# Use the keyword function to create new functions
|
# The keyword 'function' creates new functions
|
||||||
|
#function name(arglist)
|
||||||
|
# body...
|
||||||
|
#end
|
||||||
function add(x, y)
|
function add(x, y)
|
||||||
println("x is $x and y is $y")
|
println("x is $x and y is $y")
|
||||||
|
|
||||||
# Functions implicitly return the value of their last statement
|
# Functions return the value of their last statement
|
||||||
x + y
|
x + y
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -360,13 +387,16 @@ add(5, 6) #=> 11 after printing out "x is 5 and y is 6"
|
|||||||
# positional arguments
|
# positional arguments
|
||||||
function varargs(args...)
|
function varargs(args...)
|
||||||
return args
|
return args
|
||||||
|
# use the keyword return to return anywhere in the function
|
||||||
end
|
end
|
||||||
|
#=> varargs (generic function with 1 method)
|
||||||
|
|
||||||
varargs(1,2,3) #=> (1,2,3)
|
varargs(1,2,3) #=> (1,2,3)
|
||||||
|
|
||||||
# The ... is called a splat.
|
# The ... is called a splat.
|
||||||
# It can also be used in a fuction call
|
# We just used it in a function definition.
|
||||||
# to splat a list or tuple out to be the arguments
|
# It can also be used in a fuction call,
|
||||||
|
# where it will splat an Array or Tuple's contents into the argument list.
|
||||||
Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays
|
Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays
|
||||||
Set([1,2,3]...) #=> Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3)
|
Set([1,2,3]...) #=> Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3)
|
||||||
|
|
||||||
@ -399,7 +429,7 @@ keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4]
|
|||||||
keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"]
|
keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"]
|
||||||
keyword_args() #=> ["name2"=>"hello","k2"=>4]
|
keyword_args() #=> ["name2"=>"hello","k2"=>4]
|
||||||
|
|
||||||
# You can also do both at once
|
# You can combine all kinds of arguments in the same function
|
||||||
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
||||||
println("normal arg: $normal_arg")
|
println("normal arg: $normal_arg")
|
||||||
println("optional arg: $optional_positional_arg")
|
println("optional arg: $optional_positional_arg")
|
||||||
@ -420,12 +450,15 @@ function create_adder(x)
|
|||||||
return adder
|
return adder
|
||||||
end
|
end
|
||||||
|
|
||||||
# or equivalently
|
# This is "stabby lambda syntax" for creating anonymous functions
|
||||||
|
(x -> x > 2)(3) #=> true
|
||||||
|
|
||||||
|
# This function is identical to create_adder implementation above.
|
||||||
function create_adder(x)
|
function create_adder(x)
|
||||||
y -> x + y
|
y -> x + y
|
||||||
end
|
end
|
||||||
|
|
||||||
# you can also name the internal function, if you want
|
# You can also name the internal function, if you want
|
||||||
function create_adder(x)
|
function create_adder(x)
|
||||||
function adder(y)
|
function adder(y)
|
||||||
x + y
|
x + y
|
||||||
@ -436,61 +469,114 @@ end
|
|||||||
add_10 = create_adder(10)
|
add_10 = create_adder(10)
|
||||||
add_10(3) #=> 13
|
add_10(3) #=> 13
|
||||||
|
|
||||||
# The first two inner functions above are anonymous functions
|
|
||||||
(x -> x > 2)(3) #=> true
|
|
||||||
|
|
||||||
# There are built-in higher order functions
|
# There are built-in higher order functions
|
||||||
map(add_10, [1,2,3]) #=> [11, 12, 13]
|
map(add_10, [1,2,3]) #=> [11, 12, 13]
|
||||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
|
filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
|
||||||
|
|
||||||
# We can use list comprehensions for nice maps and filters
|
# We can use list comprehensions for nicer maps
|
||||||
[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13]
|
[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13]
|
||||||
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
|
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
## 5. Types and Multiple-Dispatch
|
## 5. Types
|
||||||
####################################################
|
####################################################
|
||||||
|
|
||||||
# Type definition
|
# Julia has a type system.
|
||||||
|
# Every value has a type; variables do not have types themselves.
|
||||||
|
# You can use the `typeof` function to get the type of a value.
|
||||||
|
typeof(5) #=> Int64
|
||||||
|
|
||||||
|
# Types are first-class values
|
||||||
|
typeof(Int64) #=> DataType
|
||||||
|
typeof(DataType) #=> DataType
|
||||||
|
# DataType is the type that represents types, including itself.
|
||||||
|
|
||||||
|
# Types are used for documentation, optimizations, and dispatch.
|
||||||
|
# They are not statically checked.
|
||||||
|
|
||||||
|
# Users can define types
|
||||||
|
# They are like records or structs in other languages.
|
||||||
|
# New types are defined used the `type` keyword.
|
||||||
|
|
||||||
|
# type Name
|
||||||
|
# field::OptionalType
|
||||||
|
# ...
|
||||||
|
# end
|
||||||
type Tiger
|
type Tiger
|
||||||
taillength::Float64
|
taillength::Float64
|
||||||
coatcolor # no type annotation is implicitly Any
|
coatcolor # not including a type annotation is the same as `::Any`
|
||||||
end
|
end
|
||||||
# default constructor is the properties in order
|
|
||||||
# so, Tiger(taillength,coatcolor)
|
|
||||||
|
|
||||||
# Type instantiation
|
# The default constructor's arguments are the properties
|
||||||
tigger = Tiger(3.5,"orange") # the type doubles as the constructor function
|
# of the tyep, in order the order they are listed in the definition
|
||||||
|
tigger = Tiger(3.5,"orange") #=> Tiger(3.5,"orange")
|
||||||
|
|
||||||
# Abtract Types
|
# The type doubles as the constructor function for values of that type
|
||||||
|
sherekhan = typeof(tigger)(5.6,"fire") #=> Tiger(5.6,"fire")
|
||||||
|
|
||||||
|
# These struct-style types are called concrete types
|
||||||
|
# They can be instantiated, but cannot have subtypes.
|
||||||
|
# The other kind of types is abstract types.
|
||||||
|
|
||||||
|
# abstract Name
|
||||||
abstract Cat # just a name and point in the type hierarchy
|
abstract Cat # just a name and point in the type hierarchy
|
||||||
|
|
||||||
# * types defined with the type keyword are concrete types; they can be
|
# Abstract types cannot be instantiated, but can have subtypes.
|
||||||
# instantiated
|
# For example, Number is an abstract type
|
||||||
#
|
subtypes(Number) #=> 6-element Array{Any,1}:
|
||||||
# * types defined with the abstract keyword are abstract types; they can
|
# Complex{Float16}
|
||||||
# have subtypes.
|
# Complex{Float32}
|
||||||
#
|
# Complex{Float64}
|
||||||
# * each type has one supertype; a supertype can have zero or more subtypes.
|
# Complex{T<:Real}
|
||||||
|
# ImaginaryUnit
|
||||||
|
# Real
|
||||||
|
subtypes(Cat) #=> 0-element Array{Any,1}
|
||||||
|
|
||||||
|
# Every type has a super type; use the `super` function to get it.
|
||||||
|
typeof(5) #=> Int64
|
||||||
|
super(Int64) #=> Signed
|
||||||
|
super(Signed) #=> Real
|
||||||
|
super(Real) #=> Number
|
||||||
|
super(Number) #=> Any
|
||||||
|
super(super(Signed)) #=> Number
|
||||||
|
super(Any) #=> Any
|
||||||
|
# All of these type, except for Int64, are abstract.
|
||||||
|
|
||||||
|
# <: is the subtyping operator
|
||||||
type Lion <: Cat # Lion is a subtype of Cat
|
type Lion <: Cat # Lion is a subtype of Cat
|
||||||
mane_color
|
mane_color
|
||||||
roar::String
|
roar::String
|
||||||
end
|
end
|
||||||
|
|
||||||
|
# You can define more constructors for your type
|
||||||
|
# Just define a function of the same name as the type
|
||||||
|
# and call an existing constructor to get a value of the correct type
|
||||||
|
Lion(roar::String) = Lion("green",roar)
|
||||||
|
# This is an outer constructor because it's outside the type definition
|
||||||
|
|
||||||
type Panther <: Cat # Panther is also a subtype of Cat
|
type Panther <: Cat # Panther is also a subtype of Cat
|
||||||
eye_color
|
eye_color
|
||||||
Panther() = new("green")
|
Panther() = new("green")
|
||||||
# Panthers will only have this constructor, and no default constructor.
|
# Panthers will only have this constructor, and no default constructor.
|
||||||
end
|
end
|
||||||
|
# Using inner constructors, like Panter does, gives you control
|
||||||
|
# over how values of the type can be created.
|
||||||
|
# When possible, you should use outer constructors rather than inner ones.
|
||||||
|
|
||||||
# Multiple Dispatch
|
####################################################
|
||||||
|
## 6. Multiple-Dispatch
|
||||||
|
####################################################
|
||||||
|
|
||||||
# In Julia, all named functions are generic functions
|
# In Julia, all named functions are generic functions
|
||||||
# This means that they are built up from many small methods
|
# This means that they are built up from many small methods
|
||||||
# For example, let's make a function meow:
|
# Each constructor for Lion is a method of the generic function Lion.
|
||||||
|
|
||||||
|
# For a non-constructor example, let's make a function meow:
|
||||||
|
|
||||||
|
# Definitions for Lion, Panther, Tiger
|
||||||
function meow(cat::Lion)
|
function meow(cat::Lion)
|
||||||
cat.roar # access properties using dot notation
|
cat.roar # access type properties using dot notation
|
||||||
end
|
end
|
||||||
|
|
||||||
function meow(cat::Panther)
|
function meow(cat::Panther)
|
||||||
@ -501,21 +587,75 @@ function meow(cat::Tiger)
|
|||||||
"rawwwr"
|
"rawwwr"
|
||||||
end
|
end
|
||||||
|
|
||||||
|
# Testing the meow function
|
||||||
meow(tigger) #=> "rawwr"
|
meow(tigger) #=> "rawwr"
|
||||||
meow(Lion("brown","ROAAR")) #=> "ROAAR"
|
meow(Lion("brown","ROAAR")) #=> "ROAAR"
|
||||||
meow(Panther()) #=> "grrr"
|
meow(Panther()) #=> "grrr"
|
||||||
|
|
||||||
|
# Review the local type hierarchy
|
||||||
|
issubtype(Tiger,Cat) #=> false
|
||||||
|
issubtype(Lion,Cat) #=> true
|
||||||
|
issubtype(Panther,Cat) #=> true
|
||||||
|
|
||||||
|
# Defining a function that takes Cats
|
||||||
function pet_cat(cat::Cat)
|
function pet_cat(cat::Cat)
|
||||||
println("The cat says $(meow(cat))")
|
println("The cat says $(meow(cat))")
|
||||||
end
|
end
|
||||||
|
|
||||||
|
pet_cat(Lion("42")) #=> prints "The cat says 42"
|
||||||
try
|
try
|
||||||
pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,)
|
pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,)
|
||||||
catch e
|
catch e
|
||||||
println(e)
|
println(e)
|
||||||
end
|
end
|
||||||
|
|
||||||
pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42"
|
# In OO languages, single dispatch is common;
|
||||||
|
# this means that the method is picked based on the type of the first argument.
|
||||||
|
# In Julia, all of the argument types contribute to selecting the best method.
|
||||||
|
|
||||||
|
# Let's define a function with more arguments, so we can see the difference
|
||||||
|
function fight(t::Tiger,c::Cat)
|
||||||
|
println("The $(t.coatcolor) tiger wins!")
|
||||||
|
end
|
||||||
|
#=> fight (generic function with 1 method)
|
||||||
|
|
||||||
|
fight(tigger,Panther()) #=> prints The orange tiger wins!
|
||||||
|
fight(tigger,Lion("ROAR")) #=> prints The orange tiger wins!
|
||||||
|
|
||||||
|
# Let's change the behavior when the Cat is specifically a Lion
|
||||||
|
fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!")
|
||||||
|
#=> fight (generic function with 2 methods)
|
||||||
|
|
||||||
|
fight(tigger,Panther()) #=> prints The orange tiger wins!
|
||||||
|
fight(tigger,Lion("ROAR")) #=> prints The green-maned lion wins!
|
||||||
|
|
||||||
|
# We don't need a Tiger in order to fight
|
||||||
|
fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))")
|
||||||
|
#=> fight (generic function with 3 methods)
|
||||||
|
|
||||||
|
fight(Lion("balooga!"),Panther()) #=> prints The victorious cat says grrr
|
||||||
|
try
|
||||||
|
fight(Panther(),Lion("RAWR")) #=> ERROR: no method fight(Panther,Lion)
|
||||||
|
catch
|
||||||
|
end
|
||||||
|
|
||||||
|
# Also let the cat go first
|
||||||
|
fight(c::Cat,l::Lion) = println("The cat beats the Lion")
|
||||||
|
#=> Warning: New definition
|
||||||
|
# fight(Cat,Lion) at none:1
|
||||||
|
# is ambiguous with
|
||||||
|
# fight(Lion,Cat) at none:2.
|
||||||
|
# Make sure
|
||||||
|
# fight(Lion,Lion)
|
||||||
|
# is defined first.
|
||||||
|
#fight (generic function with 4 methods)
|
||||||
|
|
||||||
|
# This warning is because it's unclear which fight will be called in:
|
||||||
|
fight(Lion("RAR"),Lion("brown","rarrr")) #=> prints The victorious cat says rarrr
|
||||||
|
# The result may be different in other versions of Julia
|
||||||
|
|
||||||
|
fight(l::Lion,l2::Lion) = println("The lions come to a tie")
|
||||||
|
fight(Lion("RAR"),Lion("brown","rarrr")) #=> prints The lions come to a tie
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -523,3 +663,4 @@ pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42"
|
|||||||
|
|
||||||
You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
|
You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
|
||||||
|
|
||||||
|
The best place to get help with Julia is the (very friendly) [mailing list](https://groups.google.com/forum/#!forum/julia-users).
|
||||||
|
Loading…
Reference in New Issue
Block a user