mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 23:33:00 +03:00
Added lambda calculus
This commit is contained in:
parent
4d3637bfc4
commit
8676459adb
121
lambda-calculus.html.markdown
Normal file
121
lambda-calculus.html.markdown
Normal file
@ -0,0 +1,121 @@
|
||||
---
|
||||
category: Algorithms & Data Structures
|
||||
name: Lambda Calculus
|
||||
contributors:
|
||||
- ["Max Sun", "http://github.com/maxsun"]
|
||||
---
|
||||
|
||||
# Lambda Calculus
|
||||
|
||||
Lambda calculus (λ-calculus), originally created by
|
||||
[Alonzo Church](https://en.wikipedia.org/wiki/Alonzo_Church),
|
||||
is the world's smallest programming language.
|
||||
Despite not having numbers, strings, booleans, or any non-function datatype,
|
||||
lambda calculus can be used to represent any Turing Machine!
|
||||
|
||||
Lambda calculus is composed of 3 elements: **variables**, **functions**, and
|
||||
**applications**.
|
||||
|
||||
|
||||
| Name | Syntax | Example | Explanation |
|
||||
|-------------|------------------------------------|-----------|-----------------------------------------------|
|
||||
| Variable | `<name>` | `x` | a variable named "x" |
|
||||
| Function | `λ<parameters>.<body>` | `λx.x` | a function with parameter "x" and body "x" |
|
||||
| Application | `<function><variable or function>` | `(λx.x)a` | calling the function "λx.x" with argument "a" |
|
||||
|
||||
The most basic function is the identity function: `λx.x` which is equivalent to
|
||||
`f(x) = x`. The first "x" is the function's argument, and the second is the
|
||||
body of the function.
|
||||
|
||||
## Free vs. Bound Variables:
|
||||
|
||||
- In the function `λx.x`, "x" is called a bound variable because it is both in
|
||||
the body of the function and a parameter.
|
||||
- In `λx.y`, "y" is called a free variable because it is never declared before hand.
|
||||
|
||||
## Evaluation:
|
||||
|
||||
Evaluation is done via
|
||||
[β-Reduction](https://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction),
|
||||
which is essentially lexically-scoped substitution.
|
||||
|
||||
When evaluating the
|
||||
expression `(λx.x)a`, we replace all occurences of "x" in the function's body
|
||||
with "a".
|
||||
|
||||
- `(λx.x)a` evaluates to: `a`
|
||||
- `(λx.y)a` evaluates to: `y`
|
||||
|
||||
You can even create higher-order functions:
|
||||
|
||||
- `(λx.(λy.x))a` evaluates to: `λy.a`
|
||||
|
||||
Although lambda calculus traditionally supports only single parameter
|
||||
functions, we can create multi-parameter functions using a technique called
|
||||
[currying](https://en.wikipedia.org/wiki/Currying).
|
||||
|
||||
- `(λx.λy.λz.xyz)` is equivalent to `f(x, y, z) = x(y(z))`
|
||||
|
||||
Sometimes `λxy.<body>` is used interchangeably with: `λx.λy.<body>`
|
||||
|
||||
----
|
||||
|
||||
It's important to recognize that traditional **lambda calculus doesn't have
|
||||
numbers, characters, or any non-function datatype!**
|
||||
|
||||
## Boolean Logic:
|
||||
|
||||
There is no "True" or "False" in lambda calculus. There isn't even a 1 or 0.
|
||||
|
||||
Instead:
|
||||
|
||||
`T` is represented by: `λx.λy.x`
|
||||
|
||||
`F` is represented by: `λx.λy.y`
|
||||
|
||||
First, we can define an "if" function `λbtf` that
|
||||
returns `t` if `b` is True and `f` if `b` is False
|
||||
|
||||
`IF` is equivalent to: `λb.λt.λf.b t f`
|
||||
|
||||
Using `IF`, we can define the basic boolean logic operators:
|
||||
|
||||
`a AND b` is equivalent to: `λab.IF a b F`
|
||||
|
||||
`a OR b` is equivalent to: `λab.IF a T b`
|
||||
|
||||
`a NOT b` is equivalent to: `λa.IF a F T`
|
||||
|
||||
*Note: `IF a b c` is essentially saying: `IF(a(b(c)))`*
|
||||
|
||||
## Numbers:
|
||||
|
||||
Although there are no numbers in lambda calculus, we can encode numbers using
|
||||
[Church numerals](https://en.wikipedia.org/wiki/Church_encoding).
|
||||
|
||||
For any number n: <code>n = λf.f<sup>n</sup></code> so:
|
||||
|
||||
`0 = λf.λx.x`
|
||||
|
||||
`1 = λf.λx.f x`
|
||||
|
||||
`2 = λf.λx.f(f x)`
|
||||
|
||||
`3 = λf.λx.f(f(f x))`
|
||||
|
||||
To increment a Church numeral,
|
||||
we use the successor function `S(n) = n + 1` which is:
|
||||
|
||||
`S = λn.λf.λx.f((n f) x)`
|
||||
|
||||
Using successor, we can define add:
|
||||
|
||||
`ADD = λab.(a S)n`
|
||||
|
||||
**Challenge:** try defining your own multiplication function!
|
||||
|
||||
## For more advanced reading:
|
||||
|
||||
1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
|
||||
2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
|
||||
3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus)
|
Loading…
Reference in New Issue
Block a user