mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-24 15:51:41 +03:00
33%
This commit is contained in:
parent
0fc4b4d5d5
commit
8782aded63
@ -1,46 +1,28 @@
|
||||
|
||||
# Comments start with hashtags.
|
||||
# 评论以 # 开始
|
||||
|
||||
# You can't make a multi-line comment per se,
|
||||
# but you can stack multiple comments like so.
|
||||
# 你不能在每一个se下执行多个注释,
|
||||
# 但是你可以像这样把命注释内容堆叠起来.
|
||||
# in Windows, hit COMMAND-ENTER to execute a line
|
||||
# 在windows下,点击回车键来执行一条命令
|
||||
# R 语言原生不支持 多行注释
|
||||
# 但是你可以像这样来多行注释
|
||||
|
||||
# 在窗口里按回车键可以执行一条命令
|
||||
|
||||
|
||||
###################################################################
|
||||
# Stuff you can do without understanding anything about programming
|
||||
# 素材可以使那些不懂编程的人同样得心用手
|
||||
# 不用懂编程就可以开始动手了
|
||||
###################################################################
|
||||
|
||||
data() # Browse pre-loaded data sets
|
||||
data() # 浏览预加载的数据集
|
||||
data(rivers) # Lengths of Major North American Rivers
|
||||
data() # 浏览内建的数据集
|
||||
data(rivers) # 北美主要河流的长度(数据集)
|
||||
ls() # Notice that "rivers" appears in the workspace
|
||||
ls() # 在工作站中查看”河流“文件夹是否出现
|
||||
head(rivers) # peek at the dataset
|
||||
head(rivers) # 浏览数据集
|
||||
ls() # 在工作空间中查看「河流」是否出现
|
||||
head(rivers) # 撇一眼数据集
|
||||
# 735 320 325 392 524 450
|
||||
length(rivers) # how many rivers were measured?
|
||||
length(rivers) # 我们测量了多少条河流?
|
||||
# 141
|
||||
length(rivers) # 测量了多少条河流
|
||||
summary(rivers)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||||
#查看”河流“数据集的特征
|
||||
# 最小值. 1st Qu. 中位数 平均值 最大值
|
||||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||||
stem(rivers) #stem-and-leaf plot (like a histogram)
|
||||
stem(rivers) #茎叶图(一种类似于直方图的展现形式)
|
||||
|
||||
|
||||
|
||||
|
||||
stem(rivers) # 茎叶图(一种类似于直方图的展现形式)
|
||||
#
|
||||
# The decimal point is 2 digit(s) to the right of the |
|
||||
# 小数点向|右边保留两位数字
|
||||
#
|
||||
# 0 | 4
|
||||
# 2 | 011223334555566667778888899900001111223333344455555666688888999
|
||||
@ -62,11 +44,10 @@ stem(rivers) #茎叶图(一种类似于直方图的展现形式)
|
||||
# 34 |
|
||||
# 36 | 1
|
||||
|
||||
stem(log(rivers)) #Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
|
||||
stem(log(rivers)) #查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
|
||||
|
||||
stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
|
||||
|
||||
# The decimal point is 1 digit(s) to the left of the |
|
||||
# 小数点向|左边保留一位数字
|
||||
#
|
||||
# 48 | 1
|
||||
# 50 |
|
||||
@ -88,35 +69,26 @@ stem(log(rivers)) #查看数据集的方式既不是标准形式,也不是取l
|
||||
# 82 | 2
|
||||
|
||||
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #给river做统计频数直方图,包含了这些参数(名称,颜色,边界,空白)
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #you'll do more plotting later
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #稍后你还可以做更多的绘图,统计频数直方图,包含了这些参数(river数据集的log值,颜色,边界,空白)
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #运行同济频数直方图的这些参数
|
||||
hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格)
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图
|
||||
|
||||
#Here's another neat data set that comes pre-loaded. R has tons of these. data()
|
||||
#这里还有其他一些简洁的数据集可以被提前加载。R语言包括大量这种类型的数据集
|
||||
# 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()
|
||||
data(discoveries)
|
||||
#数据集(发现)
|
||||
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
|
||||
#绘图(发现,颜色负值,宽度负值,X轴名称,主题:Number of important discoveries per year)
|
||||
# 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题)
|
||||
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
|
||||
|
||||
|
||||
|
||||
#rather than leaving the default ordering (by year) we could also sort to see what's typical
|
||||
#宁可舍弃也不执行排序(按照年份完成)我们可以分类来查看这是那些类型
|
||||
sort(discoveries) #给(发现)分类
|
||||
# 除了按照默认的年份排序,我们还可以排序来发现特征
|
||||
sort(discoveries)
|
||||
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
|
||||
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
|
||||
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
|
||||
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
|
||||
|
||||
stem(discoveries, scale=2)
|
||||
#茎叶图(发现,在原来的基础上降尺度扩大两倍)
|
||||
#
|
||||
stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)
|
||||
#
|
||||
# The decimal point is at the |
|
||||
# 小数点在|
|
||||
#
|
||||
# 0 | 000000000
|
||||
# 1 | 000000000000
|
||||
@ -133,32 +105,26 @@ stem(discoveries, scale=2)
|
||||
# 12 | 0
|
||||
|
||||
max(discoveries)
|
||||
#最大值(发现)
|
||||
# 12
|
||||
|
||||
summary(discoveries)
|
||||
#数据集特征(发现)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 0.0 2.0 3.0 3.1 4.0 12.0
|
||||
|
||||
|
||||
|
||||
|
||||
#Basic statistical operations don't require any programming knowledge either
|
||||
#基本的统计学操作也不需要任何编程知识
|
||||
|
||||
#roll a die a few times
|
||||
#随机输出数据
|
||||
#随机生成数据
|
||||
round(runif(7, min=.5, max=6.5))
|
||||
#round(产生均匀分布的随机数,进行四舍五入(7个, 最小值为0.5, max=6.5))
|
||||
# 译者注:runif 产生随机数,round 四舍五入
|
||||
# 1 4 6 1 4 6 4
|
||||
|
||||
#your numbers will differ from mine unless we set the same random.seed(31337)
|
||||
#你输出的结果将会与我们给出的不同,除非我们设置了同样的随机种子 random.seed(31337)
|
||||
# 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)
|
||||
|
||||
|
||||
#draw from a standard Gaussian 9 times
|
||||
#从标准高斯函数中随机的提取9次结果
|
||||
#从标准高斯函数中随机生成 9 次
|
||||
rnorm(9)
|
||||
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
|
||||
# [7] -0.59975593 0.57629164 1.08455362
|
||||
@ -172,100 +138,69 @@ rnorm(9)
|
||||
|
||||
|
||||
#########################
|
||||
# Basic programming stuff
|
||||
# 基本的编程素材
|
||||
# 基础编程
|
||||
#########################
|
||||
|
||||
# NUMBERS
|
||||
# 数值
|
||||
|
||||
# "numeric" means double-precision floating-point numbers
|
||||
#“数值”指的是双精度的浮点数
|
||||
5 # 5
|
||||
class(5) # "numeric"
|
||||
#定义(5)为数值型变量 # "numeric"
|
||||
5e4 # 50000 #handy when dealing with large,small,or variable orders of magnitude
|
||||
#5×104次方 可以手写输入改变数量级的大小将变量扩大
|
||||
6.02e23 # Avogadro's number
|
||||
#阿伏伽德罗常数
|
||||
1.6e-35 # Planck length
|
||||
#布朗克长度
|
||||
5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级
|
||||
6.02e23 # 阿伏伽德罗常数#
|
||||
1.6e-35 # 布朗克长度
|
||||
|
||||
# long-storage integers are written with L
|
||||
#长存储整数并用L书写
|
||||
# 长整数并用 L 结尾
|
||||
5L # 5
|
||||
#输出5L
|
||||
class(5L) # "integer"
|
||||
#(5L)的类型, 整数型
|
||||
|
||||
# Try ?class for more information on the class() function
|
||||
#可以自己试一试?用class()功能函数定义更多的信息
|
||||
# In fact, you can look up the documentation on `xyz` with ?xyz
|
||||
#事实上,你可以找一些文件查阅“xyz”以及xyz的差别
|
||||
# or see the source for `xyz` by evaluating xyz
|
||||
#或者通过评估xyz来查看“xyz”的来源
|
||||
# 可以自己试一试?用 class() 函数获取更多信息
|
||||
# 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别
|
||||
# `xyz` 用来查看源码实现,?xyz 用来看帮助
|
||||
|
||||
# Arithmetic
|
||||
#算法
|
||||
# 算法
|
||||
10 + 66 # 76
|
||||
53.2 - 4 # 49.2
|
||||
2 * 2.0 # 4
|
||||
3L / 4 # 0.75
|
||||
3 %% 2 # 1
|
||||
|
||||
# Weird number types
|
||||
#超自然数的类型
|
||||
# 特殊数值类型
|
||||
class(NaN) # "numeric"
|
||||
class(Inf) # "numeric"
|
||||
class(-Inf) # "numeric" #used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
|
||||
#定义以上括号内的数均为数值型变量,利用实例中的整数(正态分布函数(X),3,Inf )消除Z轴列表
|
||||
class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据
|
||||
|
||||
# but beware, NaN isn't the only weird type...
|
||||
# 但要注意,NaN并不是仅有的超自然类型。。。
|
||||
class(NA) # see below
|
||||
#定义(NA)下面的部分会理解
|
||||
# 但要注意,NaN 并不是唯一的特殊数值类型……
|
||||
class(NA) # 看上面
|
||||
class(NULL) # NULL
|
||||
#定义(NULL)无效的
|
||||
|
||||
|
||||
# SIMPLE LISTS
|
||||
#简单的数据集
|
||||
# 简单列表
|
||||
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
|
||||
#输出数值型向量(6 8 7 5 3 0 9)
|
||||
c('alef', 'bet', 'gimmel', 'dalet', 'he')
|
||||
#输出字符型变量# "alef" "bet" "gimmel" "dalet" "he"
|
||||
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
|
||||
#输出逻辑型变量FALSE FALSE FALSE FALSE
|
||||
|
||||
#some more nice built-ins
|
||||
#一些优雅的内置功能
|
||||
# 一些优雅的内置功能
|
||||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||||
#从5-15输出,以进度为1递增
|
||||
|
||||
seq(from=0, to=31337, by=1337)
|
||||
#输出序列(从0到31337,以1337递增)
|
||||
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
|
||||
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
|
||||
|
||||
letters
|
||||
#字符型变量,26个
|
||||
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
|
||||
# [20] "t" "u" "v" "w" "x" "y" "z"
|
||||
|
||||
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
|
||||
#表示月份的变量
|
||||
|
||||
|
||||
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
|
||||
#访问数据集名字为[n]的第n个元素
|
||||
|
||||
# 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]]
|
||||
letters[18] # "r"
|
||||
#访问其中的第18个变量
|
||||
LETTERS[13] # "M"
|
||||
#用大写访问其中的第13个变量
|
||||
month.name[9] # "September"
|
||||
#访问名字文件中第9个变量
|
||||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||||
#访问向量中的第三个变量
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user