mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-11-23 06:03:07 +03:00
Merge pull request #4342 from Crystal-RainSlide/patch-1
[R/en] Format R code
This commit is contained in:
commit
8f28c8021b
279
r.html.markdown
279
r.html.markdown
@ -30,13 +30,13 @@ R is a statistical computing language. It has lots of libraries for uploading an
|
||||
# R without understanding anything about programming. Do not worry
|
||||
# about understanding everything the code does. Just enjoy!
|
||||
|
||||
data() # browse pre-loaded data sets
|
||||
data(rivers) # get this one: "Lengths of Major North American Rivers"
|
||||
ls() # notice that "rivers" now appears in the workspace
|
||||
head(rivers) # peek at the data set
|
||||
data() # browse pre-loaded data sets
|
||||
data(rivers) # get this one: "Lengths of Major North American Rivers"
|
||||
ls() # notice that "rivers" now appears in the workspace
|
||||
head(rivers) # peek at the data set
|
||||
# 735 320 325 392 524 450
|
||||
|
||||
length(rivers) # how many rivers were measured?
|
||||
length(rivers) # how many rivers were measured?
|
||||
# 141
|
||||
summary(rivers) # what are some summary statistics?
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
@ -92,14 +92,15 @@ stem(log(rivers)) # Notice that the data are neither normal nor log-normal!
|
||||
# 82 | 2
|
||||
|
||||
# make a histogram:
|
||||
hist(rivers, col="#333333", border="white", breaks=25) # play around with these parameters
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) # you'll do more plotting later
|
||||
hist(rivers, col = "#333333", border = "white", breaks = 25)
|
||||
hist(log(rivers), col = "#333333", border = "white", breaks = 25)
|
||||
# play around with these parameters, you'll do more plotting later
|
||||
|
||||
# Here's another neat data set that comes pre-loaded. R has tons of these.
|
||||
data(discoveries)
|
||||
plot(discoveries, col="#333333", lwd=3, xlab="Year",
|
||||
plot(discoveries, col = "#333333", lwd = 3, xlab = "Year",
|
||||
main="Number of important discoveries per year")
|
||||
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year",
|
||||
plot(discoveries, col = "#333333", lwd = 3, type = "h", xlab = "Year",
|
||||
main="Number of important discoveries per year")
|
||||
|
||||
# Rather than leaving the default ordering (by year),
|
||||
@ -110,7 +111,7 @@ sort(discoveries)
|
||||
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
|
||||
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
|
||||
|
||||
stem(discoveries, scale=2)
|
||||
stem(discoveries, scale = 2)
|
||||
#
|
||||
# The decimal point is at the |
|
||||
#
|
||||
@ -135,7 +136,7 @@ summary(discoveries)
|
||||
# 0.0 2.0 3.0 3.1 4.0 12.0
|
||||
|
||||
# Roll a die a few times
|
||||
round(runif(7, min=.5, max=6.5))
|
||||
round(runif(7, min = .5, max = 6.5))
|
||||
# 1 4 6 1 4 6 4
|
||||
# Your numbers will differ from mine unless we set the same random.seed(31337)
|
||||
|
||||
@ -158,69 +159,68 @@ rnorm(9)
|
||||
|
||||
# INTEGERS
|
||||
# Long-storage integers are written with L
|
||||
5L # 5
|
||||
class(5L) # "integer"
|
||||
5L # 5
|
||||
class(5L) # "integer"
|
||||
# (Try ?class for more information on the class() function.)
|
||||
# In R, every single value, like 5L, is considered a vector of length 1
|
||||
length(5L) # 1
|
||||
length(5L) # 1
|
||||
# You can have an integer vector with length > 1 too:
|
||||
c(4L, 5L, 8L, 3L) # 4 5 8 3
|
||||
length(c(4L, 5L, 8L, 3L)) # 4
|
||||
class(c(4L, 5L, 8L, 3L)) # "integer"
|
||||
c(4L, 5L, 8L, 3L) # 4 5 8 3
|
||||
length(c(4L, 5L, 8L, 3L)) # 4
|
||||
class(c(4L, 5L, 8L, 3L)) # "integer"
|
||||
|
||||
# NUMERICS
|
||||
# A "numeric" is a double-precision floating-point number
|
||||
5 # 5
|
||||
class(5) # "numeric"
|
||||
5 # 5
|
||||
class(5) # "numeric"
|
||||
# Again, everything in R is a vector;
|
||||
# you can make a numeric vector with more than one element
|
||||
c(3,3,3,2,2,1) # 3 3 3 2 2 1
|
||||
c(3, 3, 3, 2, 2, 1) # 3 3 3 2 2 1
|
||||
# You can use scientific notation too
|
||||
5e4 # 50000
|
||||
6.02e23 # Avogadro's number
|
||||
1.6e-35 # Planck length
|
||||
5e4 # 50000
|
||||
6.02e23 # Avogadro's number
|
||||
1.6e-35 # Planck length
|
||||
# You can also have infinitely large or small numbers
|
||||
class(Inf) # "numeric"
|
||||
class(-Inf) # "numeric"
|
||||
class(Inf) # "numeric"
|
||||
class(-Inf) # "numeric"
|
||||
# You might use "Inf", for example, in integrate(dnorm, 3, Inf);
|
||||
# this obviates Z-score tables.
|
||||
|
||||
# BASIC ARITHMETIC
|
||||
# You can do arithmetic with numbers
|
||||
# Doing arithmetic on a mix of integers and numerics gives you another numeric
|
||||
10L + 66L # 76 # integer plus integer gives integer
|
||||
53.2 - 4 # 49.2 # numeric minus numeric gives numeric
|
||||
2.0 * 2L # 4 # numeric times integer gives numeric
|
||||
3L / 4 # 0.75 # integer over numeric gives numeric
|
||||
3 %% 2 # 1 # the remainder of two numerics is another numeric
|
||||
10L + 66L # 76 # integer plus integer gives integer
|
||||
53.2 - 4 # 49.2 # numeric minus numeric gives numeric
|
||||
2.0 * 2L # 4 # numeric times integer gives numeric
|
||||
3L / 4 # 0.75 # integer over numeric gives numeric
|
||||
3 %% 2 # 1 # the remainder of two numerics is another numeric
|
||||
# Illegal arithmetic yields you a "not-a-number":
|
||||
0 / 0 # NaN
|
||||
class(NaN) # "numeric"
|
||||
0 / 0 # NaN
|
||||
class(NaN) # "numeric"
|
||||
# You can do arithmetic on two vectors with length greater than 1,
|
||||
# so long as the larger vector's length is an integer multiple of the smaller
|
||||
c(1,2,3) + c(1,2,3) # 2 4 6
|
||||
c(1, 2, 3) + c(1, 2, 3) # 2 4 6
|
||||
# Since a single number is a vector of length one, scalars are applied
|
||||
# elementwise to vectors
|
||||
(4 * c(1,2,3) - 2) / 2 # 1 3 5
|
||||
(4 * c(1, 2, 3) - 2) / 2 # 1 3 5
|
||||
# Except for scalars, use caution when performing arithmetic on vectors with
|
||||
# different lengths. Although it can be done,
|
||||
c(1,2,3,1,2,3) * c(1,2) # 1 4 3 2 2 6
|
||||
# Matching lengths is better practice and easier to read
|
||||
c(1,2,3,1,2,3) * c(1,2,1,2,1,2)
|
||||
c(1, 2, 3, 1, 2, 3) * c(1, 2) # 1 4 3 2 2 6
|
||||
# Matching lengths is better practice and easier to read most times
|
||||
c(1, 2, 3, 1, 2, 3) * c(1, 2, 1, 2, 1, 2) # 1 4 3 2 2 6
|
||||
|
||||
# CHARACTERS
|
||||
# There's no difference between strings and characters in R
|
||||
"Horatio" # "Horatio"
|
||||
class("Horatio") # "character"
|
||||
class('H') # "character"
|
||||
"Horatio" # "Horatio"
|
||||
class("Horatio") # "character"
|
||||
class('H') # "character"
|
||||
# Those were both character vectors of length 1
|
||||
# Here is a longer one:
|
||||
c('alef', 'bet', 'gimmel', 'dalet', 'he')
|
||||
# =>
|
||||
# "alef" "bet" "gimmel" "dalet" "he"
|
||||
# => "alef" "bet" "gimmel" "dalet" "he"
|
||||
length(c("Call","me","Ishmael")) # 3
|
||||
# You can do regex operations on character vectors:
|
||||
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
|
||||
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
|
||||
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
|
||||
# R has several built-in character vectors:
|
||||
letters
|
||||
@ -231,32 +231,33 @@ month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "D
|
||||
|
||||
# LOGICALS
|
||||
# In R, a "logical" is a boolean
|
||||
class(TRUE) # "logical"
|
||||
class(FALSE) # "logical"
|
||||
|
||||
class(TRUE) # "logical"
|
||||
class(FALSE) # "logical"
|
||||
# Their behavior is normal
|
||||
TRUE == TRUE # TRUE
|
||||
TRUE == FALSE # FALSE
|
||||
FALSE != FALSE # FALSE
|
||||
FALSE != TRUE # TRUE
|
||||
TRUE == TRUE # TRUE
|
||||
TRUE == FALSE # FALSE
|
||||
FALSE != FALSE # FALSE
|
||||
FALSE != TRUE # TRUE
|
||||
# Missing data (NA) is logical, too
|
||||
class(NA) # "logical"
|
||||
class(NA) # "logical"
|
||||
# Use | and & for logic operations.
|
||||
# OR
|
||||
TRUE | FALSE # TRUE
|
||||
TRUE | FALSE # TRUE
|
||||
# AND
|
||||
TRUE & FALSE # FALSE
|
||||
TRUE & FALSE # FALSE
|
||||
# Applying | and & to vectors returns elementwise logic operations
|
||||
c(TRUE,FALSE,FALSE) | c(FALSE,TRUE,FALSE) # TRUE TRUE FALSE
|
||||
c(TRUE,FALSE,TRUE) & c(FALSE,TRUE,TRUE) # FALSE FALSE TRUE
|
||||
c(TRUE, FALSE, FALSE) | c(FALSE, TRUE, FALSE) # TRUE TRUE FALSE
|
||||
c(TRUE, FALSE, TRUE) & c(FALSE, TRUE, TRUE) # FALSE FALSE TRUE
|
||||
# You can test if x is TRUE
|
||||
isTRUE(TRUE) # TRUE
|
||||
isTRUE(TRUE) # TRUE
|
||||
# Here we get a logical vector with many elements:
|
||||
c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE
|
||||
c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE
|
||||
c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE
|
||||
c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE
|
||||
|
||||
# FACTORS
|
||||
# The factor class is for categorical data
|
||||
# Factors can be ordered (like childrens' grade levels) or unordered (like colors)
|
||||
# Factors can be ordered (like grade levels) or unordered (like colors)
|
||||
factor(c("blue", "blue", "green", NA, "blue"))
|
||||
# blue blue green <NA> blue
|
||||
# Levels: blue green
|
||||
@ -264,31 +265,27 @@ factor(c("blue", "blue", "green", NA, "blue"))
|
||||
# Note that missing data does not enter the levels
|
||||
levels(factor(c("green", "green", "blue", NA, "blue"))) # "blue" "green"
|
||||
# If a factor vector has length 1, its levels will have length 1, too
|
||||
length(factor("green")) # 1
|
||||
length(factor("green")) # 1
|
||||
length(levels(factor("green"))) # 1
|
||||
# Factors are commonly seen in data frames, a data structure we will cover later
|
||||
data(infert) # "Infertility after Spontaneous and Induced Abortion"
|
||||
data(infert) # "Infertility after Spontaneous and Induced Abortion"
|
||||
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
|
||||
|
||||
# NULL
|
||||
# "NULL" is a weird one; use it to "blank out" a vector
|
||||
class(NULL) # NULL
|
||||
class(NULL) # NULL
|
||||
parakeet = c("beak", "feathers", "wings", "eyes")
|
||||
parakeet
|
||||
# =>
|
||||
# [1] "beak" "feathers" "wings" "eyes"
|
||||
parakeet # "beak" "feathers" "wings" "eyes"
|
||||
parakeet <- NULL
|
||||
parakeet
|
||||
# =>
|
||||
# NULL
|
||||
parakeet # NULL
|
||||
|
||||
# TYPE COERCION
|
||||
# Type-coercion is when you force a value to take on a different type
|
||||
as.character(c(6, 8)) # "6" "8"
|
||||
as.logical(c(1,0,1,1)) # TRUE FALSE TRUE TRUE
|
||||
as.character(c(6, 8)) # "6" "8"
|
||||
as.logical(c(1,0,1,1)) # TRUE FALSE TRUE TRUE
|
||||
# If you put elements of different types into a vector, weird coercions happen:
|
||||
c(TRUE, 4) # 1 4
|
||||
c("dog", TRUE, 4) # "dog" "TRUE" "4"
|
||||
c(TRUE, 4) # 1 4
|
||||
c("dog", TRUE, 4) # "dog" "TRUE" "4"
|
||||
as.numeric("Bilbo")
|
||||
# =>
|
||||
# [1] NA
|
||||
@ -310,14 +307,15 @@ as.numeric("Bilbo")
|
||||
|
||||
# VARIABLES
|
||||
# Lots of way to assign stuff:
|
||||
x = 5 # this is possible
|
||||
y <- "1" # this is preferred
|
||||
TRUE -> z # this works but is weird
|
||||
x = 5 # this is possible
|
||||
y <- "1" # this is preferred traditionally
|
||||
TRUE -> z # this works but is weird
|
||||
# Refer to the Internet for the behaviors and preferences about them.
|
||||
|
||||
# LOOPS
|
||||
# We've got for loops
|
||||
for (i in 1:4) {
|
||||
print(i)
|
||||
print(i)
|
||||
}
|
||||
# We've got while loops
|
||||
a <- 10
|
||||
@ -342,11 +340,11 @@ if (4 > 3) {
|
||||
# FUNCTIONS
|
||||
# Defined like so:
|
||||
jiggle <- function(x) {
|
||||
x = x + rnorm(1, sd=.1) #add in a bit of (controlled) noise
|
||||
x = x + rnorm(1, sd=.1) # add in a bit of (controlled) noise
|
||||
return(x)
|
||||
}
|
||||
# Called like any other R function:
|
||||
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
|
||||
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
|
||||
|
||||
|
||||
|
||||
@ -358,39 +356,39 @@ jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
|
||||
|
||||
# Let's start from the very beginning, and with something you already know: vectors.
|
||||
vec <- c(8, 9, 10, 11)
|
||||
vec # 8 9 10 11
|
||||
vec # 8 9 10 11
|
||||
# We ask for specific elements by subsetting with square brackets
|
||||
# (Note that R starts counting from 1)
|
||||
vec[1] # 8
|
||||
letters[18] # "r"
|
||||
LETTERS[13] # "M"
|
||||
month.name[9] # "September"
|
||||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||||
vec[1] # 8
|
||||
letters[18] # "r"
|
||||
LETTERS[13] # "M"
|
||||
month.name[9] # "September"
|
||||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||||
# We can also search for the indices of specific components,
|
||||
which(vec %% 2 == 0) # 1 3
|
||||
which(vec %% 2 == 0) # 1 3
|
||||
# grab just the first or last few entries in the vector,
|
||||
head(vec, 1) # 8
|
||||
tail(vec, 2) # 10 11
|
||||
head(vec, 1) # 8
|
||||
tail(vec, 2) # 10 11
|
||||
# or figure out if a certain value is in the vector
|
||||
any(vec == 10) # TRUE
|
||||
any(vec == 10) # TRUE
|
||||
# If an index "goes over" you'll get NA:
|
||||
vec[6] # NA
|
||||
vec[6] # NA
|
||||
# You can find the length of your vector with length()
|
||||
length(vec) # 4
|
||||
length(vec) # 4
|
||||
# You can perform operations on entire vectors or subsets of vectors
|
||||
vec * 4 # 32 36 40 44
|
||||
vec[2:3] * 5 # 45 50
|
||||
any(vec[2:3] == 8) # FALSE
|
||||
vec * 4 # 32 36 40 44
|
||||
vec[2:3] * 5 # 45 50
|
||||
any(vec[2:3] == 8) # FALSE
|
||||
# and R has many built-in functions to summarize vectors
|
||||
mean(vec) # 9.5
|
||||
var(vec) # 1.666667
|
||||
sd(vec) # 1.290994
|
||||
max(vec) # 11
|
||||
min(vec) # 8
|
||||
sum(vec) # 38
|
||||
mean(vec) # 9.5
|
||||
var(vec) # 1.666667
|
||||
sd(vec) # 1.290994
|
||||
max(vec) # 11
|
||||
min(vec) # 8
|
||||
sum(vec) # 38
|
||||
# Some more nice built-ins:
|
||||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||||
seq(from=0, to=31337, by=1337)
|
||||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||||
seq(from = 0, to = 31337, by = 1337)
|
||||
# =>
|
||||
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
|
||||
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
|
||||
@ -398,7 +396,7 @@ seq(from=0, to=31337, by=1337)
|
||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||
|
||||
# You can make a matrix out of entries all of the same type like so:
|
||||
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
|
||||
mat <- matrix(nrow = 3, ncol = 2, c(1, 2, 3, 4, 5, 6))
|
||||
mat
|
||||
# =>
|
||||
# [,1] [,2]
|
||||
@ -406,13 +404,13 @@ mat
|
||||
# [2,] 2 5
|
||||
# [3,] 3 6
|
||||
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
|
||||
class(mat) # => "matrix" "array"
|
||||
class(mat) # "matrix" "array"
|
||||
# Ask for the first row
|
||||
mat[1,] # 1 4
|
||||
mat[1, ] # 1 4
|
||||
# Perform operation on the first column
|
||||
3 * mat[,1] # 3 6 9
|
||||
3 * mat[, 1] # 3 6 9
|
||||
# Ask for a specific cell
|
||||
mat[3,2] # 6
|
||||
mat[3, 2] # 6
|
||||
|
||||
# Transpose the whole matrix
|
||||
t(mat)
|
||||
@ -438,14 +436,14 @@ mat2
|
||||
# [2,] "2" "cat"
|
||||
# [3,] "3" "bird"
|
||||
# [4,] "4" "dog"
|
||||
class(mat2) # matrix
|
||||
class(mat2) # matrix
|
||||
# Again, note what happened!
|
||||
# Because matrices must contain entries all of the same class,
|
||||
# everything got converted to the character class
|
||||
c(class(mat2[,1]), class(mat2[,2]))
|
||||
c(class(mat2[, 1]), class(mat2[, 2]))
|
||||
|
||||
# rbind() sticks vectors together row-wise to make a matrix
|
||||
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
|
||||
mat3 <- rbind(c(1, 2, 4, 5), c(6, 7, 0, 4))
|
||||
mat3
|
||||
# =>
|
||||
# [,1] [,2] [,3] [,4]
|
||||
@ -459,11 +457,11 @@ mat3
|
||||
# This data structure is so useful for statistical programming,
|
||||
# a version of it was added to Python in the package "pandas".
|
||||
|
||||
students <- data.frame(c("Cedric","Fred","George","Cho","Draco","Ginny"),
|
||||
c(3,2,2,1,0,-1),
|
||||
c("H", "G", "G", "R", "S", "G"))
|
||||
students <- data.frame(c("Cedric", "Fred", "George", "Cho", "Draco", "Ginny"),
|
||||
c( 3, 2, 2, 1, 0, -1),
|
||||
c( "H", "G", "G", "R", "S", "G"))
|
||||
names(students) <- c("name", "year", "house") # name the columns
|
||||
class(students) # "data.frame"
|
||||
class(students) # "data.frame"
|
||||
students
|
||||
# =>
|
||||
# name year house
|
||||
@ -473,12 +471,12 @@ students
|
||||
# 4 Cho 1 R
|
||||
# 5 Draco 0 S
|
||||
# 6 Ginny -1 G
|
||||
class(students$year) # "numeric"
|
||||
class(students[,3]) # "factor"
|
||||
class(students$year) # "numeric"
|
||||
class(students[,3]) # "factor"
|
||||
# find the dimensions
|
||||
nrow(students) # 6
|
||||
ncol(students) # 3
|
||||
dim(students) # 6 3
|
||||
nrow(students) # 6
|
||||
ncol(students) # 3
|
||||
dim(students) # 6 3
|
||||
# The data.frame() function used to convert character vectors to factor
|
||||
# vectors by default; This has changed in R 4.0.0. If your R version is
|
||||
# older, turn this off by setting stringsAsFactors = FALSE when you
|
||||
@ -486,9 +484,9 @@ dim(students) # 6 3
|
||||
?data.frame
|
||||
|
||||
# There are many twisty ways to subset data frames, all subtly unalike
|
||||
students$year # 3 2 2 1 0 -1
|
||||
students[,2] # 3 2 2 1 0 -1
|
||||
students[,"year"] # 3 2 2 1 0 -1
|
||||
students$year # 3 2 2 1 0 -1
|
||||
students[, 2] # 3 2 2 1 0 -1
|
||||
students[, "year"] # 3 2 2 1 0 -1
|
||||
|
||||
# An augmented version of the data.frame structure is the data.table
|
||||
# If you're working with huge or panel data, or need to merge a few data
|
||||
@ -505,19 +503,19 @@ students # note the slightly different print-out
|
||||
# 4: Cho 1 R
|
||||
# 5: Draco 0 S
|
||||
# 6: Ginny -1 G
|
||||
students[name=="Ginny"] # get rows with name == "Ginny"
|
||||
students[name == "Ginny"] # get rows with name == "Ginny"
|
||||
# =>
|
||||
# name year house
|
||||
# 1: Ginny -1 G
|
||||
students[year==2] # get rows with year == 2
|
||||
students[year == 2] # get rows with year == 2
|
||||
# =>
|
||||
# name year house
|
||||
# 1: Fred 2 G
|
||||
# 2: George 2 G
|
||||
# data.table makes merging two data sets easy
|
||||
# let's make another data.table to merge with students
|
||||
founders <- data.table(house=c("G","H","R","S"),
|
||||
founder=c("Godric","Helga","Rowena","Salazar"))
|
||||
founders <- data.table(house = c("G" , "H" , "R" , "S"),
|
||||
founder = c("Godric", "Helga", "Rowena", "Salazar"))
|
||||
founders
|
||||
# =>
|
||||
# house founder
|
||||
@ -528,8 +526,8 @@ founders
|
||||
setkey(students, house)
|
||||
setkey(founders, house)
|
||||
students <- founders[students] # merge the two data sets by matching "house"
|
||||
setnames(students, c("house","houseFounderName","studentName","year"))
|
||||
students[,order(c("name","year","house","houseFounderName")), with=F]
|
||||
setnames(students, c("house", "houseFounderName", "studentName", "year"))
|
||||
students[, order(c("name", "year", "house", "houseFounderName")), with = F]
|
||||
# =>
|
||||
# studentName year house houseFounderName
|
||||
# 1: Fred 2 G Godric
|
||||
@ -540,7 +538,7 @@ students[,order(c("name","year","house","houseFounderName")), with=F]
|
||||
# 6: Draco 0 S Salazar
|
||||
|
||||
# data.table makes summary tables easy
|
||||
students[,sum(year),by=house]
|
||||
students[, sum(year), by = house]
|
||||
# =>
|
||||
# house V1
|
||||
# 1: G 3
|
||||
@ -573,7 +571,7 @@ students[studentName != "Draco"]
|
||||
# 5: R Cho 1
|
||||
# Using data.frame:
|
||||
students <- as.data.frame(students)
|
||||
students[students$house != "G",]
|
||||
students[students$house != "G", ]
|
||||
# =>
|
||||
# house houseFounderName studentName year
|
||||
# 4 H Helga Cedric 3
|
||||
@ -585,13 +583,13 @@ students[students$house != "G",]
|
||||
# Arrays creates n-dimensional tables
|
||||
# All elements must be of the same type
|
||||
# You can make a two-dimensional table (sort of like a matrix)
|
||||
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
|
||||
array(c(c(1, 2, 4, 5), c(8, 9, 3, 6)), dim = c(2, 4))
|
||||
# =>
|
||||
# [,1] [,2] [,3] [,4]
|
||||
# [1,] 1 4 8 3
|
||||
# [2,] 2 5 9 6
|
||||
# You can use array to make three-dimensional matrices too
|
||||
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
|
||||
array(c(c(c(2, 300, 4), c(8, 9, 0)), c(c(5, 60, 0), c(66, 7, 847))), dim = c(3, 2, 2))
|
||||
# =>
|
||||
# , , 1
|
||||
#
|
||||
@ -611,7 +609,7 @@ array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
|
||||
|
||||
# Finally, R has lists (of vectors)
|
||||
list1 <- list(time = 1:40)
|
||||
list1$price = c(rnorm(40,.5*list1$time,4)) # random
|
||||
list1$price = c(rnorm(40, .5*list1$time, 4)) # random
|
||||
list1
|
||||
# You can get items in the list like so
|
||||
list1$time # one way
|
||||
@ -684,7 +682,7 @@ write.csv(pets, "pets2.csv") # to make a new .csv file
|
||||
#########################
|
||||
|
||||
# Linear regression!
|
||||
linearModel <- lm(price ~ time, data = list1)
|
||||
linearModel <- lm(price ~ time, data = list1)
|
||||
linearModel # outputs result of regression
|
||||
# =>
|
||||
# Call:
|
||||
@ -721,7 +719,7 @@ summary(linearModel)$coefficients # another way to extract results
|
||||
# Estimate Std. Error t value Pr(>|t|)
|
||||
# (Intercept) 0.1452662 1.50084246 0.09678975 9.234021e-01
|
||||
# time 0.4943490 0.06379348 7.74920901 2.440008e-09
|
||||
summary(linearModel)$coefficients[,4] # the p-values
|
||||
summary(linearModel)$coefficients[, 4] # the p-values
|
||||
# =>
|
||||
# (Intercept) time
|
||||
# 9.234021e-01 2.440008e-09
|
||||
@ -730,8 +728,7 @@ summary(linearModel)$coefficients[,4] # the p-values
|
||||
# Logistic regression
|
||||
set.seed(1)
|
||||
list1$success = rbinom(length(list1$time), 1, .5) # random binary
|
||||
glModel <- glm(success ~ time, data = list1,
|
||||
family=binomial(link="logit"))
|
||||
glModel <- glm(success ~ time, data = list1, family=binomial(link="logit"))
|
||||
glModel # outputs result of logistic regression
|
||||
# =>
|
||||
# Call: glm(formula = success ~ time,
|
||||
@ -747,8 +744,10 @@ glModel # outputs result of logistic regression
|
||||
summary(glModel) # more verbose output from the regression
|
||||
# =>
|
||||
# Call:
|
||||
# glm(formula = success ~ time,
|
||||
# family = binomial(link = "logit"), data = list1)
|
||||
# glm(
|
||||
# formula = success ~ time,
|
||||
# family = binomial(link = "logit"),
|
||||
# data = list1)
|
||||
|
||||
# Deviance Residuals:
|
||||
# Min 1Q Median 3Q Max
|
||||
@ -782,7 +781,7 @@ plot(linearModel)
|
||||
# Histograms!
|
||||
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
||||
# Barplots!
|
||||
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
|
||||
barplot(c(1, 4, 5, 1, 2), names.arg = c("red", "blue", "purple", "green", "yellow"))
|
||||
|
||||
# GGPLOT2
|
||||
# But these are not even the prettiest of R's plots
|
||||
@ -790,10 +789,10 @@ barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
|
||||
install.packages("ggplot2")
|
||||
require(ggplot2)
|
||||
?ggplot2
|
||||
pp <- ggplot(students, aes(x=house))
|
||||
pp <- ggplot(students, aes(x = house))
|
||||
pp + geom_bar()
|
||||
ll <- as.data.table(list1)
|
||||
pp <- ggplot(ll, aes(x=time,price))
|
||||
pp <- ggplot(ll, aes(x = time, price))
|
||||
pp + geom_point()
|
||||
# ggplot2 has excellent documentation (available http://docs.ggplot2.org/current/)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user