diff --git a/directx9.html.markdown b/directx9.html.markdown new file mode 100644 index 00000000..b51f418d --- /dev/null +++ b/directx9.html.markdown @@ -0,0 +1,827 @@ +--- +category: tool +tool: DirectX 9 +filename: learndirectx9.cpp +contributors: + - ["Simon Deitermann", "s.f.deitermann@t-online.de"] +--- + +**Microsoft DirectX** is a collection of application programming interfaces (APIs) for handling tasks related to +multimedia, especially game programming and video, on Microsoft platforms. Originally, the names of these APIs +all began with Direct, such as Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound, and so forth. [...] +Direct3D (the 3D graphics API within DirectX) is widely used in the development of video games for Microsoft +Windows and the Xbox line of consoles.[1] + +In this tutorial we will be focusing on DirectX 9, which is not as low-level as it's sucessors, which are aimed at programmers very familiar with how graphics hardware works. It makes a great starting point for learning Direct3D. In this tutorial I will be using the Win32-API for window handling and the DirectX 2010 SDK. + +## Window creation + +```cpp +#include + +bool _running{ false }; + +LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { + // Handle incoming message. + switch (msg) { + // Set running to false if the user tries to close the window. + case WM_DESTROY: + _running = false; + PostQuitMessage(0); + break; + } + // Return the handled event. + return DefWindowProc(hWnd, msg, wParam, lParam); +} + +int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, + LPSTR lpCmdLine, int nCmdShow) { + // Set window properties we want to use. + WNDCLASSEX wndEx{ }; + wndEx.cbSize = sizeof(WNDCLASSEX); // structure size + wndEx.style = CS_VREDRAW | CS_HREDRAW; // class styles + wndEx.lpfnWndProc = WndProc; // window procedure + wndEx.cbClsExtra = 0; // extra memory (struct) + wndEx.cbWndExtra = 0; // extra memory (window) + wndEx.hInstance = hInstance; // module instance + wndEx.hIcon = LoadIcon(nullptr, IDI_APPLICATION); // icon + wndEx.hCursor = LoadCursor(nullptr, IDC_ARROW); // cursor + wndEx.hbrBackground = (HBRUSH) COLOR_WINDOW; // background color + wndEx.lpszMenuName = nullptr; // menu name + wndEx.lpszClassName = "DirectXClass"; // register class name + wndEx.hIconSm = nullptr; // small icon (taskbar) + // Register created class for window creation. + RegisterClassEx(&wndEx); + // Create a new window handle. + HWND hWnd{ nullptr }; + // Create a new window handle using the registered class. + hWnd = CreateWindow("DirectXClass", // registered class + "directx window", // window title + WS_OVERLAPPEDWINDOW, // window style + 50, 50, // x, y (position) + 1024, 768, // width, height (size) + nullptr, // parent window + nullptr, // menu + hInstance, // module instance + nullptr); // struct for infos + // Check if a window handle has been created. + if (!hWnd) + return -1; + // Show and update the new window. + ShowWindow(hWnd, nCmdShow); + UpdateWindow(hWnd); + // Start the game loop and send incoming messages to the window procedure. + _running = true; + MSG msg{ }; + while (_running) { + while (PeekMessage(&msg, hWnd, 0, 0, PM_REMOVE)) { + TranslateMessage(&msg); + DispatchMessage(&msg); + } + } + return 0; +} +``` + +This should create a window, that can the moved, resized and closed. + +## Direct3D initialization + +```cpp +// Includes DirectX 9 structures and functions. +// Remember to link "d3d9.lib" and "d3dx9.lib". +// For "d3dx9.lib" the DirectX SDK (June 2010) is needed. +// Don't forget to set your subsystem to Windows. +#include +#include +// Includes the ComPtr, a smart pointer automatically releasing COM objects. +#include +using namespace Microsoft::WRL; +// Next we define some Direct3D9 interface structs we need. +ComPtr _d3d{ }; +ComPtr _device{ }; +``` + +With all interfaces declared we can now initialize Direct3D. + +```cpp +bool InitD3D(HWND hWnd) { + // Store the size of the window rectangle. + RECT clientRect{ }; + GetClientRect(hWnd, &clientRect); + // Initialize Direct3D + _d3d = Direct3DCreate9(D3D_SDK_VERSION); + // Get the display mode which format will be the window format. + D3DDISPLAYMODE displayMode{ }; + _d3d->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, // use default graphics card + &displayMode); // display mode pointer + // Next we have to set some presentation parameters. + D3DPRESENT_PARAMETERS pp{ }; + pp.BackBufferWidth = clientRect.right; // width is window width + pp.BackBufferHeight = clientRect.bottom; // height is window height + pp.BackBufferFormat = displayMode.Format; // use adapter format + pp.BackBufferCount = 1; // 1 back buffer (default) + pp.SwapEffect = D3DSWAPEFFECT_DISCARD; // discard after presentation + pp.hDeviceWindow = hWnd; // associated window handle + pp.Windowed = true; // display in window mode + pp.Flags = 0; // no special flags + // Variable to store results of methods to check if everything succeded. + HRESULT result{ }; + result = _d3d->CreateDevice(D3DADAPTER_DEFAULT, // use default graphics card + D3DDEVTYPE_HAL, // use hardware acceleration + hWnd, // the window handle + D3DCREATE_HARDWARE_VERTEXPROCESSING, + // vertices are processed by the hardware + &pp, // the present parameters + &_device); // struct to store the device + // Return false if the device creation failed. + // It is helpful to set breakpoints at the return line. + if (FAILED(result)) + return false; + // Create a viewport which hold information about which region to draw to. + D3DVIEWPORT9 viewport{ }; + viewport.X = 0; // start at top left corner + viewport.Y = 0; // .. + viewport.Width = clientRect.right; // use the entire window + viewport.Height = clientRect.bottom; // .. + viewport.MinZ = 0.0f; // minimun view distance + viewport.MaxZ = 100.0f; // maximum view distance + // Apply the created viewport. + result = _device->SetViewport(&viewport); + // Always check if something failed. + if (FAILED(result)) + return false; + // Everything was successful, return true. + return true; +} +// ... +// Back in our WinMain function we call our initialization function. +// ... +// Check if Direct3D initialization succeded, else exit the application. +if (!InitD3D(hWnd)) + return -1; + +MSG msg{ }; +while (_running) { + while (PeekMessage(&msg, hWnd, 0, 0, PM_REMOVE)) { + TranslateMessage(&msg); + DispatchMessage(&msg); + } + // Clear to render target to a specified color. + _device->Clear(0, // number of rects to clear + nullptr, // indicates to clear the entire window + D3DCLEAR_TARGET, // clear all render targets + D3DXCOLOR{ 1.0f, 0.0f, 0.0f, 1.0f }, // color (red) + 0.0f, // depth buffer clear value + 0); // stencil buffer clear value + // ... + // Drawing operations go here. + // ... + // Flip the front- and backbuffer. + _device->Present(nullptr, // no source rectangle + nullptr, // no destination rectangle + nullptr, // don't change the current window handle + nullptr); // pretty much always nullptr +} +// ... +``` + +Now the window should be displayed in a bright red color. + +## Vertex Buffer + +Let's create a vertex buffer to store the vertices for our triangle + +```cpp +// At the top of the file we need to add a include. +#include +// First we declare a new ComPtr holding a vertex buffer. +ComPtr _vertexBuffer{ }; +// Lets define a funtion to calculate the byte size of a std::vector +template +unsigned int GetByteSize(const std::vector& vec) { + return sizeof(vec[0]) * vec.size(); +} +// Define "flexible vertex format" describing the content of our vertex struct. +// Use the defined color as diffuse color. +const unsigned long VertexStructFVF = D3DFVF_XYZ | D3DFVF_DIFFUSE; +// Define a struct representing the vertex data the buffer will hold. +struct VStruct { + float x, y, z; // store the 3D position + D3DCOLOR color; // store a color +}; +// Declare a new function to create a vertex buffer. +IDirect3DVertexBuffer9* CreateBuffer(const std::vector& vertices) { + // Declare the buffer to be returned. + IDirect3DVertexBuffer9* buffer{ }; + HRESULT result{ }; + result = _device->CreateVertexBuffer( + GetByteSize(vertices), // vector size in bytes + 0, // data usage + VertexStructFVF, // FVF of the struct + D3DPOOL_DEFAULT, // use default pool for the buffer + &buffer, // receiving buffer + nullptr); // special shared handle + // Check if buffer was created successfully. + if (FAILED(result)) + return nullptr; + // Create a data pointer for copying the vertex data + void* data{ }; + // Lock the buffer to get a buffer for data storage. + result = buffer->Lock(0, // byte offset + GetByteSize(vertices), // size to lock + &data, // receiving data pointer + 0); // special lock flags + // Check if buffer was locked successfully. + if (FAILED(result)) + return nullptr; + // Copy the vertex data using C standard libraries memcpy. + memcpy(data, vertices.data(), GetByteSize(vertices)); + buffer->Unlock(); + // Set the FVF Direct3D uses for rendering. + _device->SetFVF(VertexStructFVF); + // If everything was successful return the filled vertex buffer. + return buffer; +} +``` + +In our **WinMain** we can now call the new function after the Direct3D initialization. + +```cpp +// ... +if (!InitD3D(hWnd)) + return -1; +// Define the vertices we need to draw a triangle. +// Values are declared in a clockwise direction else Direct3D would cull them. +// If you want to diable culling just call: +// _device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); +std::vector vertices { + // Bottom left + VStruct{ -1.0f, -1.0f, 1.0f, D3DXCOLOR{ 1.0f, 0.0f, 0.0f, 1.0f } }, + // Top left + VStruct{ -1.0f, 1.0f, 1.0f, D3DXCOLOR{ 0.0f, 1.0f, 0.0f, 1.0f } }, + // Top right + VStruct{ 1.0f, 1.0f, 1.0f, D3DXCOLOR{ 0.0f, 0.0f, 1.0f, 1.0f } } +}; +// Try to create the vertex buffer else exit the application. +if (!(_vertexBuffer = CreateBuffer(vertices))) + return -1; +// ... +``` + +## Transformations + +Before we can use the vertex buffer to draw our primitives, we first need to set up the matrices. + +```cpp +// Lets create a new funtions for the matrix transformations. +bool SetupTransform() { + // Create a view matrix that transforms world space to + // view space. + D3DXMATRIX view{ }; + // Use a left-handed coordinate system. + D3DXMatrixLookAtLH( + &view, // receiving matrix + &D3DXVECTOR3{ 0.0f, 0.0f, -20.0f }, // "camera" position + &D3DXVECTOR3{ 0.0f, 0.0f, 0.0f }, // position where to look at + &D3DXVECTOR3{ 0.0f, 1.0f, 0.0f }); // positive y-axis is up + HRESULT result{ }; + result = _device->SetTransform(D3DTS_VIEW, &view); // apply the view matrix + if (FAILED(result)) + return false; + // Create a projection matrix that defines the view frustrum. + // It transforms the view space to projection space. + D3DXMATRIX projection{ }; + // Create a perspective projection using a left-handed coordinate system. + D3DXMatrixPerspectiveFovLH( + &projection, // receiving matrix + D3DXToRadian(60.0f), // field of view in radians + 1024.0f / 768.0f, // aspect ratio (width / height) + 0.0f, // minimum view distance + 100.0f); // maximum view distance + result = _device->SetTransform(D3DTS_PROJECTION, &projection); + if (FAILED(result)) + return false; + // Disable lighting for now so we can see what we want to render. + result = _device->SetRenderState(D3DRS_LIGHTING, false); + // View and projection matrix are successfully applied, return true. + return true; +} +// ... +// Back in the WinMain function we can now call the transformation function. +// ... +if (!(_vertexBuffer = CreateVertexBuffer(vertices))) + return -1; +// Call the transformation setup function. +if (!SetupTransform()) + return -1; +// ... +``` + +## Rendering + +Now that everything is setup we can start drawing our first 2D triangle in 3D space. + +```cpp +// ... +if (!SetupTransform()) + return -1; +// First we have to bind our vertex buffer to the data stream. +HRESULT result{ }; +result = _device->SetStreamSource(0, // use the default stream + _vertexBuffer.Get(), // pass the vertex buffer + 0, // no offset + sizeof(VStruct)); // size of vertex struct +if (FAILED(result)) + return -1; + +// Create a world transformation matrix and set it to an identity matrix. +D3DXMATRIX world{ }; +D3DXMatrixIdentity(&world); +// Create a scalation matrix scaling our primitve by 10 in the x, +// 10 in the y and keeping the z direction. +D3DXMATRIX scaling{ }; +D3DXMatrixScaling(&scaling, // matrix to scale + 10, // x scaling + 10, // y scaling + 1); // z scaling +// Create a rotation matrix storing the current rotation of our primitive. +// We set the current rotation matrix to an identity matrix for now. +D3DXMATRIX rotation{ }; +D3DXMatrixIdentity(&rotation); +// Now we multiply the scalation and rotation matrix and store the result +// in the world matrix. +D3DXMatrixMultiply(&world, // destination matrix + &scaling, // matrix 1 + &rotation); // matrix 2 +// Apply the current world matrix. +_device->SetTransform(D3DTS_WORLD, &world); +// Disable culling so we can see the back of our primitive when it rotates. +_device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); +// The default cullmode is D3DCULL_CW. +// After we used our the rotation matrix for multiplication we can set it +// to rotate a small amount. +// D3DXToRadian() function converts degree to radians. +D3DXMatrixRotationY(&rotation, // matrix to rotate + D3DXToRadian(0.5f)); // rotation angle in radians + +MSG msg{ }; + while (_running) { + // ... + _device->Clear(0, nullptr, D3DCLEAR_TARGET, + D3DXCOLOR{ 0.0f, 0.0f, 0.0f, 1.0f }, 0.0f, 0); + // With everything setup we can call the draw function. + _device->BeginScene(); + _device->DrawPrimitive(D3DPT_TRIANGLELIST, // primitive type + 0, // start vertex + 1); // primitive count + _device->EndScene(); + + _device->Present(nullptr, nullptr, nullptr, nullptr); + // We can keep multiplying the world matrix with our rotation matrix + // to add it's rotation to the world matrix. + D3DXMatrixMultiply(&world, &world, &rotation); + // Update the modified world matrix. + _device->SetTransform(D3DTS_WORLD, &world); + // ... +``` + +You should now be viewing a 10x10 units colored triangle from 20 units away, rotating around its origin.
+You can find the complete working code here: [DirectX - 1](https://pastebin.com/YkSF2rkk) + +## Indexing + +To make it easier to draw primitives sharing a lot of vertices we can use indexing, so we only have to declare the unique vertices and put the order they are called in another array. + +```cpp +// First we declare a new ComPtr for our index buffer. +ComPtr _indexBuffer{ }; +// ... +// Declare a function creating a index buffer from a std::vector +IDirect3DIndexBuffer9* CreateIBuffer(std::vector& indices) { + IDirect3DIndexBuffer9* buffer{ }; + HRESULT result{ }; + result = _device->CreateIndexBuffer( + GetByteSize(indices), // vector size in bytes + 0, // data usage + D3DFMT_INDEX32, // format is 32 bit int + D3DPOOL_DEFAULT, // default pool + &buffer, // receiving buffer + nullptr); // special shared handle + if (FAILED(result)) + return nullptr; + // Create a data pointer pointing to the buffer data. + void* data{ }; + result = buffer->Lock(0, // byte offset + GetByteSize(indices), // byte size + &data, // receiving data pointer + 0); // special lock flag + if (FAILED(result)) + return nullptr; + // Copy the index data and unlock after copying. + memcpy(data, indices.data(), GetByteSize(indices)); + buffer->Unlock(); + // Return the filled index buffer. + return buffer; +} +// ... +// In our WinMain we can now change the vertex data and create new index data. +// ... +std::vector vertices { + VStruct{ -1.0f, -1.0f, 1.0f, D3DXCOLOR{ 1.0f, 0.0f, 0.0f, 1.0f } }, + VStruct{ -1.0f, 1.0f, 1.0f, D3DXCOLOR{ 0.0f, 1.0f, 0.0f, 1.0f } }, + VStruct{ 1.0f, 1.0f, 1.0f, D3DXCOLOR{ 0.0f, 0.0f, 1.0f, 1.0f } }, + // Add a vertex for the bottom right. + VStruct{ 1.0f, -1.0f, 1.0f, D3DXCOLOR{ 1.0f, 1.0f, 0.0f, 1.0f } } +}; +// Declare the index data, here we build a rectangle from two triangles. +std::vector indices { + 0, 1, 2, // the first triangle (b,left -> t,left -> t,right) + 0, 2, 3 // the second triangle (b,left -> t,right -> b,right) +}; +// ... +// Now we call the "CreateIBuffer" function to create a index buffer. +// ... +if (!(_indexBuffer = CreateIBuffer(indices))) + return -1; +// ... +// After binding the vertex buffer we have to bind the index buffer to +// use indexed rendering. +result = _device->SetStreamSource(0, _vertexBuffer.Get(), 0, sizeof(VStruct)); +if (FAILED(result)) + return -1; +// Bind the index data to the default data stream. +result = _device->SetIndices(_indexBuffer.Get()) +if (FAILED(result)) + return -1; +// ... +// Now we replace the "DrawPrimitive" function with an indexed version. +_device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, // primitive type + 0, // base vertex index + 0, // minimum index + indices.size(), // amount of vertices + 0, // start in index buffer + 2); // primitive count +// ... +``` + +Now you should see a colored rectangle made up of 2 triangles. If you set the primitive count in the "DrawIndexedPrimitive" method to 1 only the first triangle should be rendered and if you set the start of the index buffer to 3 and the primitive count to 1 only the second triangle should be rendered.
+You can find the complete working code here: [DirectX - 2](https://pastebin.com/yWBPWPRG) + +## Vertex declaration + +Instead of using the old "flexible vertex format" we should use vertex declarations instead, as the FVF declarations get converted to vertex declarations internally anyway. + +```cpp +// First we have to REMOVE the following lines: +const unsigned long VertexStructFVF = D3DFVF_XYZ | D3DFVF_DIFFUSE; +// and +_device->SetFVF(VertexStructFVF); +// ... +// We also have to change the vertex buffer creation FVF-flag. +result = _device->CreateVertexBuffer( + GetByteSize(vertices), + 0, + 0, // <- 0 indicates we use vertex declarations + D3DPOOL_DEFAULT, + &buffer, + nullptr); +// Next we have to declare a new ComPtr. +ComPtr _vertexDecl{ }; +// ... +result = _device->SetIndices(_indexBuffer.Get()); +if (FAILED(result)) + return -1; +// Now we have to declare and apply the vertex declaration. +// Create a vector of vertex elements making up the vertex declaration. +std::vector vertexDeclDesc { + { 0, // stream index + 0, // byte offset from the struct beginning + D3DDECLTYPE_FLOAT3, // data type (3d float vector) + D3DDECLMETHOD_DEFAULT, // tessellator operation + D3DDECLUSAGE_POSTION, // usage of the data + 0 }, // index (multiples usage of the same type) + { 0, + 12, // byte offset (3 * sizeof(float) bytes) + D3DDECLTYPE_D3DCOLOR, + D3DDECLMETHOD_DEFAULT, + D3DDECLUSAGE_COLOR, + 0 }, + D3DDECL_END() // marks the end of the vertex declaration +}; +// After having defined the vector we can create a vertex declaration from it. +result = _device->CreateVertexDeclaration( + vertexDeclDesc.data(), // the vertex element array + &_vertexDecl); // receiving pointer +if (FAILED(result)) + return -1; +// Apply the created vertex declaration. +_device->SetVertexDeclaration(_vertexDecl.Get()); +// ... +``` + +## Shader + +The maximum shader model for Direct3D 9 is shader model 3.0. Even though every modern graphics card should support it, it is best to check for capabilities. + +```cpp +// ... +_device->SetVertexDeclaration(_vertexDecl.Get()); +// First we have to request the device capabilities. +D3DCAPS9 deviceCaps{ }; +_device->GetDeviceCaps(&deviceCaps); +// Now we check if shader model 3.0 is supported for the vertex shader. +if (deviceCaps.VertexShaderVersion < D3DVS_VERSION(3, 0)) + return -1; +// And the same for the pixel shader. +if (deviceCaps.PixelShaderVersion < D3DPS_VERSION(3, 0)) + return -1; +``` + +Now that we are sure shader model 3.0 is supported let's create the vertex and pixel shader files. +DirectX 9 introduced the HLSL (**High Level Shading Language**), a C-like shader language, which +simplified the shader programming a lot, as you could only write shaders in shader assembly in DirectX 8. +Let's create a simple vertex- and pixel shader. + +**Vertex Shader** + +```cpp +// 3 4x4 float matrices representing the matrices we set in the fixed-function +// pipeline by using the SetTransform() method. +float4x4 projectionMatrix; +float4x4 viewMatrix; +float4x4 worldMatrix; +// The input struct to the vertex shader. +// It holds a 3d float vector for the position and a 4d float vector +// for the color. +struct VS_INPUT { + float3 position : POSITION; + float4 color : COLOR; +}; +// The output struct of the vertex shader, that is passed to the pixel shader. +struct VS_OUTPUT { + float4 position : POSITION; + float4 color : COLOR; +}; +// The main function of the vertex shader returns the output it sends to the +// pixel shader and receives it's input as a parameter. +VS_OUTPUT main(VS_INPUT input) { + // Declare a empty struct, that the vertex shader returns. + VS_OUTPUT output; + // Set the output position to the input position and set + // the w-component to 1, as the input position is a 3d vector and + // the output position a 4d vector. + output.position = float4(input.position, 1.0f); + // Multiply the output position step by step with the world, view and + // projection matrices. + output.position = mul(output.position, worldMatrix); + output.position = mul(output.position, viewMatrix); + output.position = mul(output.position, projectionMatrix); + // Pass the input color unchanged to the pixel shader. + output.color = input.color; + // Return the output struct to the pixel shader. + // The position value is automatically used as the vertex position. + return output; +} +``` + +**Pixel Shader** + +```cpp +// The pixel shader input struct must be the same as the vertex shader output! +struct PS_INPUT { + float4 position : POSITION; + float4 color : COLOR; +}; +// The pixel shader simply returns a 4d vector representing the vertex color. +// It receives it's input as a parameter just like the vertex shader. +// We have to declare the output semantic as color to it gets interpreted +// correctly. +float4 main(PS_INPUT input) : COLOR { + return input.color; +} +``` + +For more on semantics: [DirectX - Semantics](https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-semantics#vertex-shader-semantics) + +Now we have to do quite some changes to the code. + +```cpp +ComPtr _device{ }; +ComPtr _vertexBuffer{ }; +ComPtr _indexBuffer{ }; +ComPtr _vertexDecl{ }; +// We have to add a ComPtr for the vertex- and pixel shader, aswell as one +// for the constants (matrices) in our vertex shader. +ComPtr _vertexShader{ }; +ComPtr _pixelShader{ }; +ComPtr _vertexTable{ }; +// Declare the world and rotation matrix as global, because we use them in +// WinMain and SetupTransform now. +D3DXMATRIX _worldMatrix{ }; +D3DXMATRIX _rotationMatrix{ }; +// ... +bool SetupTransform() { + // Set the world and rotation matrix to an identity matrix. + D3DXMatrixIdentity(&_worldMatrix); + D3DXMatrixIdentity(&_rotationMatrix); + + D3DXMATRIX scaling{ }; + D3DXMatrixScaling(&scaling, 10, 10, 1); + D3DXMatrixMultiply(&_worldMatrix, &scaling, &_rotationMatrix); + // After multiplying the scalation and rotation matrix the have to pass + // them to the shader, by using a method from the constant table + // of the vertex shader. + HRESULT result{ }; + result = _vertexTable->SetMatrix( + _device.Get(), // direct3d device + "worldMatrix", // matrix name in the shader + &_worldMatrix); // pointer to the matrix + if (FAILED(result)) + return false; + + D3DXMATRIX view{ }; + D3DXMatrixLookAtLH(&view, &D3DXVECTOR3{ 0.0f, 0.0f, -20.0f }, + &D3DXVECTOR3{ 0.0f, 0.0f, 0.0f }, &D3DXVECTOR3{ 0.0f, 1.0f, 0.0f }); + // Do the same for the view matrix. + result = _vertexTable->SetMatrix( + _device.Get(), // direct 3d device + "viewMatrix", // matrix name + &view); // matrix + if (FAILED(result)) + return false; + + D3DXMATRIX projection{ }; + D3DXMatrixPerspectiveFovLH(&projection, D3DXToRadian(60.0f), + 1024.0f / 768.0f, 0.0f, 100.0f); + // And also for the projection matrix. + result = _vertexTable->SetMatrix( + _device.Get(), + "projectionMatrix", + &projection); + if (FAILED(result)) + return false; + + D3DXMatrixRotationY(&_rotationMatrix, D3DXToRadian(0.5f)); + return true; +} +// ... +// Vertex and index buffer creation aswell as initialization stay unchanged. +// ... +// After checking that shader model 3.0 is available we have to compile and +// create the shaders. +// Declare two temporary buffers storing the compiled shader code. +ID3DXBuffer* vertexShaderBuffer{ }; +ID3DXBuffer* pixelShaderBuffer{ }; +result = D3DXCompileShaderFromFile("vertex.hlsl", // shader name + nullptr, // macro definitions + nullptr, // special includes + "main", // entry point name + "vs_3_0", // shader model version + 0, // special flags + &vertexShaderBuffer, // code buffer + nullptr, // error message + &_vertexTable); // constant table +if (FAILED(result)) + return -1; +// After the vertex shader compile the pixel shader. +result = D3DXCompileShaderFromFile("pixel.hlsl", + nullptr, + nullptr, + "main", + "ps_3_0", // pixel shader model 3.0 + 0, + &pixelShaderBuffer, + nullptr, + nullptr); // no need for a constant table +if (FAILED(result)) + return -1; +// Create the vertex shader from the code buffer. +result = _device->CreateVertexShader( + (DWORD*)vertexShaderBuffer->GetBufferPointer(), // code buffer + &_vertexShader); // vertex shader pointer +if (FAILED(result)) + return -1; + +result = _device->CreatePixelShader( + (DWORD*)pixelShaderBuffer->GetBufferPointer(), + &_pixelShader); +if (FAILED(result)) + return -1; +// Release the temporary code buffers after the shaders are created. +vertexShaderBuffer->Release(); +pixelShaderBuffer->Release(); +// Apply the vertex- and pixel shader. +_device->SetVertexShader(_vertexShader.Get()); +_device->SetPixelShader(_pixelShader.Get()); +// Apply the transform after the shaders have been set. +if (!SetupTransform()) + return -1; +// You can also REMOVE the call so set the lighting render state. +_device->SetRenderState(D3DRS_LIGHTING, false); +``` + +You can find the complete code here: [DirectX - 3](https://pastebin.com/y4NrvawY) + +## Texturing + +```cpp +// First we need to declare a ComPtr for the texture. +ComPtr _texture{ }; +// Then we have to change the vertex struct. +struct VStruct { + float x, y, z; + float u, v; // Add texture u and v coordinates + D3DCOLOR color; +}; +// In the vertex declaration we have to add the texture coordinates. +// the top left of the texture is u: 0, v: 0. +std::vector vertices { + VStruct{ -1.0f, -1.0f, 1.0f, 0.0f, 1.0f, ... }, // bottom left + VStruct{ -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, ... }, // top left + VStruct{ 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, ... }, // top right + VStruct{ 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, ... } // bottom right +}; +// Next is the vertex declaration. +std::vector vertexDecl{ + {0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, + // Add a 2d float vector used for texture coordinates. + {0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0}, + // The color offset is not (3 + 2) * sizeof(float) = 20 bytes + {0, 20, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0}, + D3DDECL_END() +}; +// Now we have to load the texture and pass its to the shader. +// ... +_device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); +// Create a Direct3D texture from a png file. +result = D3DXCreateTextureFromFile(_device.Get(), // direct3d device + "texture.png", // texture path + &_texture); // receiving texture pointer +if (FAILED(result)) + return -1; +// Attach the texture to shader stage 0, which is equal to texture register 0 +// in the pixel shader. +_device->SetTexture(0, _texture.Get()); +``` + +With the main code ready we now have to adjust the shaders to these changes. + +**Vertex Shader** + +```cpp +float4x4 projectionMatrix; +float4x4 viewMatrix; +float4x4 worldMatrix; +// Add the texture coordinates to the vertex shader in- and output. +struct VS_INPUT { + float3 position : POSITION; + float2 texcoord : TEXCOORD; + float4 color : COLOR; +}; + +struct VS_OUTPUT { + float4 position : POSITION; + float2 texcoord : TEXCOORD; + float4 color : COLOR; +}; + +VS_OUTPUT main(VS_INPUT input) { + VS_OUTPUT output; + + output.position = float4(input.position, 1.0f); + output.position = mul(output.position, worldMatrix); + output.position = mul(output.position, viewMatrix); + output.position = mul(output.position, projectionMatrix); + + output.color = input.color; + // Set the texcoord output to the input. + output.texcoord = input.texcoord; + + return output; +} +``` + +**Pixel Shader** + +```cpp +// Create a sampler called "sam0" using sampler register 0, which is equal +// to the texture stage 0, to which we passed the texture. +sampler sam0 : register(s0); + +struct PS_INPUT { + float4 position : POSITION; + float2 texcoord : TEXCOORD; + float4 color : COLOR; +}; + +float4 main(PS_INPUT input) : COLOR{ + // Do a linear interpolation between the texture color and the input color + // using 75% of the input color. + // tex2D returns the texture data at the specified texture coordinate. + return lerp(tex2D(sam0, input.texcoord), input.color, 0.75f); +} +``` + +## Quotes +[1][DirectX - Wikipedia](https://en.wikipedia.org/wiki/DirectX)