Fix julia comments in russian version

This commit is contained in:
Guillermo Garza 2014-03-18 14:05:24 -05:00
parent 9395900afd
commit a375065b19

View File

@ -24,58 +24,58 @@ Julia — гомоиконный функциональный язык прог
# Всё в Julia — выражение.
# Простые численные типы
3 #=> 3 (Int64)
3.2 #=> 3.2 (Float64)
2 + 1im #=> 2 + 1im (Complex{Int64})
2//3 #=> 2//3 (Rational{Int64})
3 # => 3 (Int64)
3.2 # => 3.2 (Float64)
2 + 1im # => 2 + 1im (Complex{Int64})
2//3 # => 2//3 (Rational{Int64})
# Доступны все привычные инфиксные операторы
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7.0
5 / 2 #=> 2.5 # деление Int на Int всегда возвращает Float
div(5, 2) #=> 2 # для округления к нулю используется div
5 \ 35 #=> 7.0
2 ^ 2 #=> 4 # возведение в степень
12 % 10 #=> 2
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7.0
5 / 2 # => 2.5 # деление Int на Int всегда возвращает Float
div(5, 2) # => 2 # для округления к нулю используется div
5 \ 35 # => 7.0
2 ^ 2 # => 4 # возведение в степень
12 % 10 # => 2
# С помощью скобок можно изменить приоритет операций
(1 + 3) * 2 #=> 8
(1 + 3) * 2 # => 8
# Побитовые операторы
~2 #=> -3 # НЕ (NOT)
3 & 5 #=> 1 # И (AND)
2 | 4 #=> 6 # ИЛИ (OR)
2 $ 4 #=> 6 # сложение по модулю 2 (XOR)
2 >>> 1 #=> 1 # логический сдвиг вправо
2 >> 1 #=> 1 # арифметический сдвиг вправо
2 << 1 #=> 4 # логический/арифметический сдвиг влево
~2 # => -3 # НЕ (NOT)
3 & 5 # => 1 # И (AND)
2 | 4 # => 6 # ИЛИ (OR)
2 $ 4 # => 6 # сложение по модулю 2 (XOR)
2 >>> 1 # => 1 # логический сдвиг вправо
2 >> 1 # => 1 # арифметический сдвиг вправо
2 << 1 # => 4 # логический/арифметический сдвиг влево
# Функция bits возвращает бинарное представление числа
bits(12345)
#=> "0000000000000000000000000000000000000000000000000011000000111001"
# => "0000000000000000000000000000000000000000000000000011000000111001"
bits(12345.0)
#=> "0100000011001000000111001000000000000000000000000000000000000000"
# => "0100000011001000000111001000000000000000000000000000000000000000"
# Логические значения являются примитивами
true
false
# Булевы операторы
!true #=> false
!false #=> true
1 == 1 #=> true
2 == 1 #=> false
1 != 1 #=> false
2 != 1 #=> true
1 < 10 #=> true
1 > 10 #=> false
2 <= 2 #=> true
2 >= 2 #=> true
!true # => false
!false # => true
1 == 1 # => true
2 == 1 # => false
1 != 1 # => false
2 != 1 # => true
1 < 10 # => true
1 > 10 # => false
2 <= 2 # => true
2 >= 2 # => true
# Сравнения можно объединять цепочкой
1 < 2 < 3 #=> true
2 < 3 < 2 #=> false
1 < 2 < 3 # => true
2 < 3 < 2 # => false
# Строки объявляются с помощью двойных кавычек — "
"This is a string."
@ -84,12 +84,12 @@ false
'a'
# Строки индексируются как массивы символов
"This is a string"[1] #=> 'T' # Индексы начинаются с единицы
"This is a string"[1] # => 'T' # Индексы начинаются с единицы
# Индексирование не всегда правильно работает для UTF8-строк,
# поэтому рекомендуется использовать итерирование (map, for-циклы и т.п.).
# Для строковой интерполяции используется знак доллара ($):
"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4"
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
# В скобках можно использовать любое выражение языка.
# Другой способ форматирования строк — макрос printf
@ -103,12 +103,12 @@ false
println("I'm Julia. Nice to meet you!")
# Переменные инициализируются без предварительного объявления
some_var = 5 #=> 5
some_var #=> 5
some_var = 5 # => 5
some_var # => 5
# Попытка доступа к переменной до инициализации вызывает ошибку
try
some_other_var #=> ERROR: some_other_var not defined
some_other_var # => ERROR: some_other_var not defined
catch e
println(e)
end
@ -116,12 +116,12 @@ end
# Имена переменных начинаются с букв.
# После первого символа можно использовать буквы, цифры,
# символы подчёркивания и восклицательные знаки.
SomeOtherVar123! = 6 #=> 6
SomeOtherVar123! = 6 # => 6
# Допустимо использование unicode-символов
☃ = 8 #=> 8
☃ = 8 # => 8
# Это особенно удобно для математических обозначений
2 * π #=> 6.283185307179586
2 * π # => 6.283185307179586
# Рекомендации по именованию:
# * имена переменных в нижнем регистре, слова разделяются символом
@ -136,49 +136,49 @@ SomeOtherVar123! = 6 #=> 6
# оканчивается восклицательным знаком.
# Массив хранит последовательность значений, индексируемых с единицы до n:
a = Int64[] #=> пустой массив Int64-элементов
a = Int64[] # => пустой массив Int64-элементов
# Одномерный массив объявляется разделёнными запятой значениями.
b = [4, 5, 6] #=> массив из трёх Int64-элементов: [4, 5, 6]
b[1] #=> 4
b[end] #=> 6
b = [4, 5, 6] # => массив из трёх Int64-элементов: [4, 5, 6]
b[1] # => 4
b[end] # => 6
# Строки двумерного массива разделяются точкой с запятой.
# Элементы строк разделяются пробелами.
matrix = [1 2; 3 4] #=> 2x2 Int64 Array: [1 2; 3 4]
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
# push! и append! добавляют в список новые элементы
push!(a,1) #=> [1]
push!(a,2) #=> [1,2]
push!(a,4) #=> [1,2,4]
push!(a,3) #=> [1,2,4,3]
append!(a,b) #=> [1,2,4,3,4,5,6]
push!(a,1) # => [1]
push!(a,2) # => [1,2]
push!(a,4) # => [1,2,4]
push!(a,3) # => [1,2,4,3]
append!(a,b) # => [1,2,4,3,4,5,6]
# pop! удаляет из списка последний элемент
pop!(b) #=> возвращает 6; массив b снова равен [4,5]
pop!(b) # => возвращает 6; массив b снова равен [4,5]
# Вернём 6 обратно
push!(b,6) # b снова [4,5,6].
a[1] #=> 1 # индексы начинаются с единицы!
a[1] # => 1 # индексы начинаются с единицы!
# Последний элемент можно получить с помощью end
a[end] #=> 6
a[end] # => 6
# Операции сдвига
shift!(a) #=> 1 and a is now [2,4,3,4,5,6]
unshift!(a,7) #=> [7,2,4,3,4,5,6]
shift!(a) # => 1 and a is now [2,4,3,4,5,6]
unshift!(a,7) # => [7,2,4,3,4,5,6]
# Восклицательный знак на конце названия функции означает,
# что функция изменяет переданные ей аргументы.
arr = [5,4,6] #=> массив из 3 Int64-элементов: [5,4,6]
sort(arr) #=> [4,5,6]; но arr равен [5,4,6]
sort!(arr) #=> [4,5,6]; а теперь arr — [4,5,6]
arr = [5,4,6] # => массив из 3 Int64-элементов: [5,4,6]
sort(arr) # => [4,5,6]; но arr равен [5,4,6]
sort!(arr) # => [4,5,6]; а теперь arr — [4,5,6]
# Попытка доступа за пределами массива выбрасывает BoundsError
try
a[0] #=> ERROR: BoundsError() in getindex at array.jl:270
a[end+1] #=> ERROR: BoundsError() in getindex at array.jl:270
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
catch e
println(e)
end
@ -189,111 +189,111 @@ end
# то найти эти файлы можно в директории base.
# Создавать массивы можно из последовательности
a = [1:5] #=> массив из 5 Int64-элементов: [1,2,3,4,5]
a = [1:5] # => массив из 5 Int64-элементов: [1,2,3,4,5]
# Срезы
a[1:3] #=> [1, 2, 3]
a[2:] #=> [2, 3, 4, 5]
a[2:end] #=> [2, 3, 4, 5]
a[1:3] # => [1, 2, 3]
a[2:] # => [2, 3, 4, 5]
a[2:end] # => [2, 3, 4, 5]
# splice! удаляет элемент из массива
# Remove elements from an array by index with splice!
arr = [3,4,5]
splice!(arr,2) #=> 4 ; arr теперь равен [3,5]
splice!(arr,2) # => 4 ; arr теперь равен [3,5]
# append! объединяет списки
b = [1,2,3]
append!(a,b) # теперь a равен [1, 2, 3, 4, 5, 1, 2, 3]
# Проверка на вхождение
in(1, a) #=> true
in(1, a) # => true
# Длина списка
length(a) #=> 8
length(a) # => 8
# Кортеж — неизменяемая структура.
tup = (1, 2, 3) #=> (1,2,3) # кортеж (Int64,Int64,Int64).
tup[1] #=> 1
tup = (1, 2, 3) # => (1,2,3) # кортеж (Int64,Int64,Int64).
tup[1] # => 1
try:
tup[1] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
println(e)
end
# Многие функции над списками работают и для кортежей
length(tup) #=> 3
tup[1:2] #=> (1,2)
in(2, tup) #=> true
length(tup) # => 3
tup[1:2] # => (1,2)
in(2, tup) # => true
# Кортежи можно распаковывать в переменные
a, b, c = (1, 2, 3) #=> (1,2,3) # a = 1, b = 2 и c = 3
a, b, c = (1, 2, 3) # => (1,2,3) # a = 1, b = 2 и c = 3
# Скобки из предыдущего примера можно опустить
d, e, f = 4, 5, 6 #=> (4,5,6)
d, e, f = 4, 5, 6 # => (4,5,6)
# Кортеж из одного элемента не равен значению этого элемента
(1,) == 1 #=> false
(1) == 1 #=> true
(1,) == 1 # => false
(1) == 1 # => true
# Обмен значений
e, d = d, e #=> (5,4) # d = 5, e = 4
e, d = d, e # => (5,4) # d = 5, e = 4
# Словари содержат ассоциативные массивы
empty_dict = Dict() #=> Dict{Any,Any}()
empty_dict = Dict() # => Dict{Any,Any}()
# Для создания словаря можно использовать литерал
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
# => Dict{ASCIIString,Int64}
# Значения ищутся по ключу с помощью оператора []
filled_dict["one"] #=> 1
filled_dict["one"] # => 1
# Получить все ключи
keys(filled_dict)
#=> KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# Заметьте, словарь не запоминает порядок, в котором добавляются ключи.
# Получить все значения.
values(filled_dict)
#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# То же касается и порядка значений.
# Проверка вхождения ключа в словарь
in(("one", 1), filled_dict) #=> true
in(("two", 3), filled_dict) #=> false
haskey(filled_dict, "one") #=> true
haskey(filled_dict, 1) #=> false
in(("one", 1), filled_dict) # => true
in(("two", 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
# Попытка обратиться к несуществующему ключу выбросит ошибку
try
filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
catch e
println(e)
end
# Используйте метод get со значением по умолчанию, чтобы избежать этой ошибки
# get(dictionary,key,default_value)
get(filled_dict,"one",4) #=> 1
get(filled_dict,"four",4) #=> 4
get(filled_dict,"one",4) # => 1
get(filled_dict,"four",4) # => 4
# Для коллекций неотсортированных уникальных элементов используйте Set
empty_set = Set() #=> Set{Any}()
empty_set = Set() # => Set{Any}()
# Инициализация множества
filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4)
filled_set = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
# Добавление элементов
push!(filled_set,5) #=> Set{Int64}(5,4,2,3,1)
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
# Проверка вхождения элементов во множество
in(2, filled_set) #=> true
in(10, filled_set) #=> false
in(2, filled_set) # => true
in(10, filled_set) # => false
# Функции для получения пересечения, объединения и разницы.
other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) #=> Set{Int64}(3,4,5)
union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6)
setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4)
other_set = Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
####################################################
@ -311,7 +311,7 @@ elseif some_var < 10 # Необязательная ветка elseif.
else # else-ветка также опциональна.
println("some_var is indeed 10.")
end
#=> prints "some var is smaller than 10"
# => prints "some var is smaller than 10"
# Цикл for проходит по итерируемым объектам
@ -368,7 +368,7 @@ try
catch e
println("caught it $e")
end
#=> caught it ErrorException("help")
# => caught it ErrorException("help")
####################################################
@ -386,27 +386,27 @@ function add(x, y)
x + y
end
add(5, 6) #=> Вернёт 11, напечатав "x is 5 and y is 6"
add(5, 6) # => Вернёт 11, напечатав "x is 5 and y is 6"
# Функция может принимать переменное количество позиционных аргументов.
function varargs(args...)
return args
# для возвращения из функции в любом месте используется 'return'
end
#=> varargs (generic function with 1 method)
# => varargs (generic function with 1 method)
varargs(1,2,3) #=> (1,2,3)
varargs(1,2,3) # => (1,2,3)
# Многоточие (...) — это splat.
# Мы только что воспользовались им в определении функции.
# Также его можно использовать при вызове функции,
# где он преобразует содержимое массива или кортежа в список аргументов.
Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # формирует множество массивов
Set([1,2,3]...) #=> Set{Int64}(1,2,3) # эквивалентно Set(1,2,3)
Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # формирует множество массивов
Set([1,2,3]...) # => Set{Int64}(1,2,3) # эквивалентно Set(1,2,3)
x = (1,2,3) #=> (1,2,3)
Set(x) #=> Set{(Int64,Int64,Int64)}((1,2,3)) # множество кортежей
Set(x...) #=> Set{Int64}(2,3,1)
x = (1,2,3) # => (1,2,3)
Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # множество кортежей
Set(x...) # => Set{Int64}(2,3,1)
# Опциональные позиционные аргументы
@ -414,12 +414,12 @@ function defaults(a,b,x=5,y=6)
return "$a $b and $x $y"
end
defaults('h','g') #=> "h g and 5 6"
defaults('h','g','j') #=> "h g and j 6"
defaults('h','g','j','k') #=> "h g and j k"
defaults('h','g') # => "h g and 5 6"
defaults('h','g','j') # => "h g and j 6"
defaults('h','g','j','k') # => "h g and j k"
try
defaults('h') #=> ERROR: no method defaults(Char,)
defaults() #=> ERROR: no methods defaults()
defaults('h') # => ERROR: no method defaults(Char,)
defaults() # => ERROR: no methods defaults()
catch e
println(e)
end
@ -429,9 +429,9 @@ function keyword_args(;k1=4,name2="hello") # обратите внимание
return ["k1"=>k1,"name2"=>name2]
end
keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4]
keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"]
keyword_args() #=> ["name2"=>"hello","k2"=>4]
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
keyword_args() # => ["name2"=>"hello","k2"=>4]
# В одной функции можно совмещать все виды аргументов
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
@ -455,7 +455,7 @@ function create_adder(x)
end
# Анонимная функция
(x -> x > 2)(3) #=> true
(x -> x > 2)(3) # => true
# Эта функция идентичная предыдущей версии create_adder
function create_adder(x)
@ -471,16 +471,16 @@ function create_adder(x)
end
add_10 = create_adder(10)
add_10(3) #=> 13
add_10(3) # => 13
# Встроенные функции высшего порядка
map(add_10, [1,2,3]) #=> [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
map(add_10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# Списковые сборки
[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
####################################################
## 5. Типы
@ -489,12 +489,12 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
# Julia has a type system.
# Каждое значение имеет тип, но переменные не определяют тип значения.
# Функция `typeof` возвращает тип значения.
typeof(5) #=> Int64
typeof(5) # => Int64
# Types are first-class values
# Типы являются значениями первого класса
typeof(Int64) #=> DataType
typeof(DataType) #=> DataType
typeof(Int64) # => DataType
typeof(DataType) # => DataType
# Тип DataType представляет типы, включая себя самого.
# Типы используются в качестве документации, для оптимизации и организации.
@ -515,10 +515,10 @@ end
# Аргументы конструктора по умолчанию — свойства типа
# в порядке их определения.
tigger = Tiger(3.5,"orange") #=> Tiger(3.5,"orange")
tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange")
# Тип объекта по сути является конструктором значений такого типа
sherekhan = typeof(tigger)(5.6,"fire") #=> Tiger(5.6,"fire")
sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire")
# Эти типы, похожие на структуры, называются конкретными.
# Можно создавать объекты таких типов, но не их подтипы.
@ -530,23 +530,23 @@ abstract Cat # просто имя и точка в иерархии типов
# Объекты абстрактных типов создавать нельзя,
# но зато от них можно наследовать подтипы.
# Например, Number — это абстрактный тип.
subtypes(Number) #=> 6 элементов в массиве Array{Any,1}:
subtypes(Number) # => 6 элементов в массиве Array{Any,1}:
# Complex{Float16}
# Complex{Float32}
# Complex{Float64}
# Complex{T<:Real}
# ImaginaryUnit
# Real
subtypes(Cat) #=> пустой массив Array{Any,1}
subtypes(Cat) # => пустой массив Array{Any,1}
# У всех типов есть супертип. Для его определения есть функция `super`.
typeof(5) #=> Int64
super(Int64) #=> Signed
super(Signed) #=> Real
super(Real) #=> Number
super(Number) #=> Any
super(super(Signed)) #=> Number
super(Any) #=> Any
typeof(5) # => Int64
super(Int64) # => Signed
super(Signed) # => Real
super(Real) # => Number
super(Number) # => Any
super(super(Signed)) # => Number
super(Any) # => Any
# Все эти типы, за исключением Int64, абстрактные.
# Для создания подтипа используется оператор <:
@ -595,23 +595,23 @@ function meow(animal::Tiger)
end
# Проверка
meow(tigger) #=> "rawwr"
meow(Lion("brown","ROAAR")) #=> "ROAAR"
meow(Panther()) #=> "grrr"
meow(tigger) # => "rawwr"
meow(Lion("brown","ROAAR")) # => "ROAAR"
meow(Panther()) # => "grrr"
# Вспомним иерархию типов
issubtype(Tiger,Cat) #=> false
issubtype(Lion,Cat) #=> true
issubtype(Panther,Cat) #=> true
issubtype(Tiger,Cat) # => false
issubtype(Lion,Cat) # => true
issubtype(Panther,Cat) # => true
# Определим функцию, принимающую на вход объекты типа Cat
function pet_cat(cat::Cat)
println("The cat says $(meow(cat))")
end
pet_cat(Lion("42")) #=> выведет "The cat says 42"
pet_cat(Lion("42")) # => выведет "The cat says 42"
try
pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,)
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
catch e
println(e)
end
@ -624,31 +624,31 @@ end
function fight(t::Tiger,c::Cat)
println("The $(t.coatcolor) tiger wins!")
end
#=> fight (generic function with 1 method)
# => fight (generic function with 1 method)
fight(tigger,Panther()) #=> выведет The orange tiger wins!
fight(tigger,Lion("ROAR")) #=> выведет The orange tiger wins!
fight(tigger,Panther()) # => выведет The orange tiger wins!
fight(tigger,Lion("ROAR")) # => выведет The orange tiger wins!
# Переопределим поведение функции, если Cat-объект является Lion-объектом
fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!")
#=> fight (generic function with 2 methods)
# => fight (generic function with 2 methods)
fight(tigger,Panther()) #=> выведет The orange tiger wins!
fight(tigger,Lion("ROAR")) #=> выведет The green-maned lion wins!
fight(tigger,Panther()) # => выведет The orange tiger wins!
fight(tigger,Lion("ROAR")) # => выведет The green-maned lion wins!
# Драться можно не только с тиграми!
fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))")
#=> fight (generic function with 3 methods)
# => fight (generic function with 3 methods)
fight(Lion("balooga!"),Panther()) #=> выведет The victorious cat says grrr
fight(Lion("balooga!"),Panther()) # => выведет The victorious cat says grrr
try
fight(Panther(),Lion("RAWR")) #=> ERROR: no method fight(Panther,Lion)
fight(Panther(),Lion("RAWR")) # => ERROR: no method fight(Panther,Lion)
catch
end
# Вообще, пускай кошачьи могут первыми проявлять агрессию
fight(c::Cat,l::Lion) = println("The cat beats the Lion")
#=> Warning: New definition
# => Warning: New definition
# fight(Cat,Lion) at none:1
# is ambiguous with
# fight(Lion,Cat) at none:2.
@ -658,11 +658,11 @@ fight(c::Cat,l::Lion) = println("The cat beats the Lion")
#fight (generic function with 4 methods)
# Предупреждение говорит, что неясно, какой из методов вызывать:
fight(Lion("RAR"),Lion("brown","rarrr")) #=> выведет The victorious cat says rarrr
fight(Lion("RAR"),Lion("brown","rarrr")) # => выведет The victorious cat says rarrr
# Результат может оказаться разным в разных версиях Julia
fight(l::Lion,l2::Lion) = println("The lions come to a tie")
fight(Lion("RAR"),Lion("brown","rarrr")) #=> выведет The lions come to a tie
fight(Lion("RAR"),Lion("brown","rarrr")) # => выведет The lions come to a tie
# Под капотом