Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Louie Dinh 2013-06-28 16:29:46 -07:00
commit a87a1ea3fd
4 changed files with 488 additions and 45 deletions

338
c.html.markdown Normal file
View File

@ -0,0 +1,338 @@
---
language: c
author: Adam Bard
author_url: http://adambard.com/
---
Ah, C. Still the language of modern high-performance computing.
C is the lowest-level language most programmers will ever use, but
it more than makes up for it with raw speed. Just be aware of its manual
memory management and C will take you as far as you need to go.
```c
// Single-line comments start with //
/*
Multi-line comments look like this.
*/
// Import headers with #include
#include <stdlib.h>
#include <stdio.h>
// Declare function signatures in advance in a .h file, or at the top of
// your .c file.
void function_1();
void function_2();
// Your program's entry point is a function called
// main with an integer return type.
int main(){
// print output using printf, for "print formatted"
// %d is an integer, \n is a newline
printf("%d\n", 0); // => Prints 0
// All statements must end with a semicolon
///////////////////////////////////////
// Types
///////////////////////////////////////
// Variables must always be declared with a type.
// 32-bit integer
int x_int = 0;
// 16-bit integer
short x_short = 0;
// 8-bit integer, aka 1 byte
char x_char = 0;
char y_char = 'y'; // Char literals are quoted with ''
long x_long = 0; // Still 32 bytes for historical reasons
long long x_long_long = 0; // Guaranteed to be at least 64 bytes
// 32-bit floating-point decimal
float x_float = 0.0;
// 64-bit floating-point decimal
double x_double = 0.0;
// Integer types may be unsigned
unsigned char ux_char;
unsigned short ux_short;
unsigned int ux_int;
unsigned long long ux_long_long;
// Arrays must be initialized with a concrete size.
char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
// You can initialize an array to 0 thusly:
char my_array[20] = {0};
// Indexing an array is like other languages -- or,
// rather, other languages are like C
my_array[0]; // => 0
// Arrays are mutable; it's just memory!
my_array[1] = 2;
printf("%d\n", my_array[1]); // => 2
// Strings are just lists of chars terminated by a null (0x00) byte.
char a_string[20] = "This is a string";
/*
You may have noticed that a_string is only 16 chars long.
Char #17 is a null byte, 0x00 aka \0.
Chars #18, 19 and 20 have undefined values.
*/
printf("%d\n", a_string[16]);
///////////////////////////////////////
// Operators
///////////////////////////////////////
int i1 = 1, i2 = 2; // Shorthand for multiple declaration
float f1 = 1.0, f2 = 2.0;
// Arithmetic is straightforward
i1 + i2; // => 3
i2 - i1; // => 1
i2 * i1; // => 2
i1 / i2; // => 0 (0.5, but truncated towards 0)
f1 / f2; // => 0.5, plus or minus epsilon
// Modulo is there as well
11 % 3; // => 2
// Comparison operators are probably familiar, but
// there is no boolean type in c. We use ints instead.
// 0 is false, anything else is true
3 == 2; // => 0 (false)
3 != 2; // => 1 (true)
3 > 2; // => 1
3 < 2; // => 0
2 <= 2; // => 1
2 >= 2; // => 1
// Logic works on ints
!3; // => 0 (Logical not)
!0; // => 1
1 && 1; // => 1 (Logical and)
0 && 1; // => 0
0 || 1; // => 1 (Logical or)
0 || 0; // => 0
// Bitwise operators!
~0x0F; // => 0xF0 (bitwise negation)
0x0F & 0xF0; // => 0x00 (bitwise AND)
0x0F | 0xF0; // => 0xFF (bitwise OR)
0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
0x01 << 1; // => 0x02 (bitwise left shift (by 1))
0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
///////////////////////////////////////
// Control Structures
///////////////////////////////////////
if(0){
printf("I am never run\n");
}else if(0){
printf("I am also never run\n");
}else{
printf("I print\n");
}
// While loops exist
int ii = 0;
while(ii < 10){
printf("%d, ", ii++); // ii++ increments ii in-place, after using its value.
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf("\n");
int kk = 0;
do{
printf("%d, ", kk);
}while(++kk < 10); // ++kk increments kk in-place, before using its value
// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf("\n");
// For loops too
int jj;
for(jj=0; jj < 10; jj++){
printf("%d, ", jj);
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf("\n");
///////////////////////////////////////
// Typecasting
///////////////////////////////////////
// Everything in C is stored somewhere in memory. You can change
// the type of a variable to choose how to read its data
int x_hex = 0x01; // You can assign vars with hex literals
// Casting between types will attempt to preserve their numeric values
printf("%d\n", x_hex); // => Prints 1
printf("%d\n", (short) x_hex); // => Prints 1
printf("%d\n", (char) x_hex); // => Prints 1
// Types will overflow without warning
printf("%d\n", (char) 257); // => 1 (Max char = 255)
printf("%d\n", (short) 65537); // => 1 (Max short = 65535)
///////////////////////////////////////
// Pointers
///////////////////////////////////////
// You can retrieve the memory address of your variables,
// then mess with them.
int x = 0;
printf("%p\n", &x); // Use & to retrieve the address of a variable
// (%p formats a pointer)
// => Prints some address in memory;
int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory
int xx;
for(xx=0; xx<20; xx++){
x_array[xx] = 20 - xx;
} // Initialize x_array to 20, 19, 18,... 2, 1
// Pointer types end with *
int* x_ptr = x_array;
// This works because arrays are pointers to their first element.
// Put a * in front to de-reference a pointer and retrieve the value,
// of the same type as the pointer, that the pointer is pointing at.
printf("%d\n", *(x_ptr)); // => Prints 20
printf("%d\n", x_array[0]); // => Prints 20
// Pointers are incremented and decremented based on their type
printf("%d\n", *(x_ptr + 1)); // => Prints 19
printf("%d\n", x_array[1]); // => Prints 19
// Array indexes are such a thin wrapper around pointer
// arithmetic that the following works:
printf("%d\n", 0[x_array]); // => Prints 20;
printf("%d\n", 2[x_array]); // => Prints 18;
// The above is equivalent to:
printf("%d\n", *(0 + x_ptr));
printf("%d\n", *(2 + x_ptr));
// You can give a pointer a block of memory to use with malloc
int* my_ptr = (int*) malloc(sizeof(int) * 20);
for(xx=0; xx<20; xx++){
*(my_ptr + xx) = 20 - xx;
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
// Dereferencing memory that you haven't allocated gives
// unpredictable results
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what?
// When you're done with a malloc'd block, you need to free it
free(my_ptr);
// Strings can be char arrays, but are usually represented as char
// pointers:
char* my_str = "This is my very own string";
printf("%d\n", *my_str); // 84 (The ascii value of 'T')
function_1();
} // end main function
///////////////////////////////////////
// Functions
///////////////////////////////////////
// Function declaration syntax:
// <return type> <function name>(<args>)
int add_two_ints(int x1, int x2){
return x1 + x2; // Use return a return a value
}
/*
Pointers are passed-by-reference (duh), so functions
can mutate their values.
Example: in-place string reversal
*/
// A void function returns no value
void str_reverse(char* str_in){
char tmp;
int ii=0, len = strlen(str_in); // Strlen is part of the c standard library
for(ii=0; ii<len/2; ii++){
tmp = str_in[ii];
str_in[ii] = str_in[len - ii - 1]; // ii-th char from end
str_in[len - ii - 1] = tmp;
}
}
/*
char c[] = "This is a test.";
str_reverse(c);
printf("%s\n", c); // => ".tset a si sihT"
*/
///////////////////////////////////////
// User-defined types and structs
///////////////////////////////////////
// Typedefs can be used to create type aliases
typedef int my_type;
my_type my_type_var = 0;
// Structs are just collections of data
struct rectangle {
int width;
int height;
};
void function_1(){
struct rectangle my_rec;
// Access struct members with .
my_rec.width = 10;
my_rec.height = 20;
// You can declare pointers to structs
struct rectangle* my_rec_ptr = &my_rec;
// Use dereferencing to set struct pointer members...
(*my_rec_ptr).width = 30;
// ... or use the -> shorthand
my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;
}
// You can apply a typedef to a struct for convenience
typedef struct rectangle rect;
int area(rect r){
return r.width * r.height;
}
```
## Further Reading
Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language)
Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/)
Other than that, Google is your friend.

View File

@ -12,6 +12,9 @@ state as it comes up.
This combination allows it to handle concurrent processing very simply,
and often automatically.
(You need a version of Clojure 1.2 or newer)
```clojure
; Comments start with semicolons.

View File

@ -87,7 +87,7 @@ $sgl_quotes
END; // Nowdoc syntax is available in PHP 5.3.0
// Manipulation
$concatenated = $sgl_quotes + $dbl_quotes;
$concatenated = $sgl_quotes . $dbl_quotes;
```
### Compound
@ -119,6 +119,8 @@ print('Hello World!'); // The same as echo
// echo is actually a language construct, so you can drop the parentheses.
echo 'Hello World!';
print 'Hello World!'; // So is print
echo 100;
echo $variable;
echo function_result();
@ -135,12 +137,12 @@ echo function_result();
```php
<?php
$a = 1;
$b = 2;
$a = $b; // A now contains the same value sa $b
$a =& $b;
// A now contains a reference to $b. Changing the value of
// $a will change the value of $b also, and vice-versa.
$x = 1;
$y = 2;
$x = $y; // A now contains the same value sa $y
$x = &$y;
// $x now contains a reference to $y. Changing the value of
// $x will change the value of $y also, and vice-versa.
```
### Comparison
@ -148,15 +150,20 @@ $a =& $b;
```php
<?php
// These comparisons will always be true, even if the types aren't the same.
$a == $b // TRUE if $a is equal to $b after type juggling.
$a === $b // TRUE if $a is equal to $b, and they are of the same type.
$a != $b // TRUE if $a is not equal to $b after type juggling.
$a <> $b // TRUE if $a is not equal to $b after type juggling.
$a !== $b // TRUE if $a is not equal to $b, or they are not of the same type.
$a < $b // TRUE if $a is strictly less than $b.
$a > $b // TRUE if $a is strictly greater than $b.
$a <= $b // TRUE if $a is less than or equal to $b.
$a >= $b // TRUE if $a is greater than or equal to $b.
// The following will only be true if the values match and are the same type.
$a === $b // TRUE if $a is equal to $b, and they are of the same type.
$a !== $b // TRUE if $a is not equal to $b, or they are not of the same type.
1 == '1' // TRUE
1 === '1' // FALSE
```
## [Type Juggling](http://www.php.net/manual/en/language.types.type-juggling.php)
@ -176,7 +183,11 @@ echo $string + $string;
$string = 'one';
echo $string + $string;
// Outputs 0 because the + operator cannot cast the string 'one' to a number
```
Type casting can be used to treat a variable as another type temporarily by using cast operators in parentheses.
```php
$boolean = (boolean) $integer; // $boolean is true
$zero = 0;
@ -222,9 +233,9 @@ if (/* test */) {
?>
<?php if (/* test */): ?>
<!-- Do something that isn't PHP -->
This is displayed if the test is truthy.
<?php else: ?>
<!-- Do something default -->
This is displayed otherwise.
<?php endif; ?>
```
@ -278,7 +289,6 @@ while ($i < 5) {
if ($i == 3) {
break; // Exit out of the while loop and continue.
}
echo $i++;
}
@ -288,7 +298,6 @@ while ($i < 5) {
if ($i == 3) {
continue; // Skip this iteration of the loop
}
echo $i++;
}
```
@ -325,8 +334,8 @@ number of letters, numbers, or underscores. There are three ways to declare func
```php
<?php
function my_function_name ($arg_1, $arg_2) { // $arg_1 and $arg_2 are required
// Do something with $arg_1 and $arg_2;
function my_function_name ($arg_1, $arg_2) {
// $arg_1 and $arg_2 are required
}
// Functions may be nested to limit scope
@ -335,7 +344,25 @@ function outer_function ($arg_1 = null) { // $arg_1 is optional
}
}
// inner_function() does not exist and cannot be called until outer_function() is called
// inner_function() does not exist and cannot be called until
// outer_function() is called
```
This enables [currying](http://en.wikipedia.org/wiki/Currying) in PHP.
```php
function foo ($x, $y, $z) {
echo "$x - $y - $z";
}
function bar ($x, $y) {
return function ($z) use ($x, $y) {
foo($x, $y, $z);
};
}
$bar = bar('A', 'B');
$bar('C');
```
### [Variable](http://www.php.net/manual/en/functions.variable-functions.php)
@ -355,7 +382,11 @@ Similar to variable functions, functions may be anonymous.
```php
<?php
my_function(function () {
function my_function($callback) {
$callback('My argument');
}
my_function(function ($my_argument) {
// do something
});
@ -396,12 +427,10 @@ class MyClass {
function myFunction() {
}
function function youCannotOverrideMe()
{
final function youCannotOverrideMe() {
}
public static function myStaticMethod()
{
public static function myStaticMethod() {
}
}
@ -438,7 +467,8 @@ echo $x->property; // Will use the __get() method
$x->property = 'Something'; // Will use the __set() method
```
Classes can be abstract (using the ```abstract``` keyword), extend other classes (using the ```extends``` keyword) and implement interfaces (using the ```implements``` keyword). An interface is declared with the ```interface``` keyword.
Classes can be abstract (using the ```abstract``` keyword), extend other classes (using the ```extends``` keyword) and
implement interfaces (using the ```implements``` keyword). An interface is declared with the ```interface``` keyword.
```php
<?php

View File

@ -26,7 +26,7 @@ to Python 2.x. Look for another tour of Python 3 soon!
# Math is what you would expect
1 + 1 #=> 2
8 - 1 #=> 9
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7
@ -49,11 +49,24 @@ False
not True #=> False
not False #=> True
# Equality is ==
1 == 1 #=> True
2 == 1 #=> False
# Inequality is !=
1 != 1 #=> False
2 != 1 #=> True
# More comparisons
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
2 >= 2 #=> True
# Comparisons can be chained !
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False
# Strings are created with " or '
"This is a string."
'This is also a string.'
@ -81,8 +94,15 @@ some_var = 5 # Convention is to use lower_case_with_underscores
some_var #=> 5
# Accessing a previously unassigned variable is an exception
some_other_var # Will raise a NameError
try:
some_other_var
except NameError:
print "Raises a name error"
# Conditional Expressions can be used when assigning
some_var = a if a > b else b
# If a is greater than b, then a is assigned to some_var.
# Otherwise b is assigned to some_var.
# Lists store sequences
li = []
@ -102,11 +122,16 @@ li.append(3) # li is now [1, 2, 4, 3] again.
# Access a list like you would any array
li[0] #=> 1
# Look at the last element
li[-1] #=> 4
# Looking out of bounds is an IndexError
li[4] # Raises an IndexError
li[-1] #=> 3
# You can look at ranges with slice syntax. It's an closed/open range for you mathy types.
# Looking out of bounds is an IndexError
try:
li[4] # Raises an IndexError
except IndexError:
print "Raises an IndexError"
# You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
li[1:3] #=> [2, 4]
# Omit the beginning
li[:3] #=> [1, 2, 4]
@ -131,7 +156,10 @@ len(li) #=> 6
# Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0] #=> 1
try:
tup[0] = 3 # Raises a TypeError
except TypeError:
print "Tuples cannot be mutated."
# You can do all those list thingies on tuples too
len(tup) #=> 3
@ -143,7 +171,7 @@ tup[:2] #=> (1, 2)
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
# Now look how easy it is to swap to values
# Now look how easy it is to swap two values
e, d = d, e # d is now 5 and e is now 4
@ -168,6 +196,21 @@ filled_dict.values() #=> [3, 2, 1]
"one" in filled_dict #=> True
1 in filled_dict #=> False
# Trying to look up a non-existing key will raise a KeyError
filled_dict["four"] #=> KeyError
# Use get method to avoid the KeyError
filled_dict.get("one") #=> 1
filled_dict.get("four") #=> None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4) #=> 1
filled_dict.get("four", 4) #=> 4
# Setdefault method is a safe way to add new key-value pair into dictionary
filled_dict.setdefault("five", 5) #filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5
# Sets store ... well sets
empty_set = set()
@ -232,11 +275,20 @@ while x < 4:
x += 1 # Shorthand for x = x + 1
# Handle exceptions with a try/except block
# Works on Python 2.6 and up:
try:
raise IndexError("This is an index error") # Use raise to raise an error
# Use raise to raise an error
raise IndexError("This is an index error")
except IndexError as e:
pass # Pass is just a no-op. Usually you would do recovery here.
# Works for Python 2.7 and down:
try:
raise IndexError("This is an index error")
except IndexError, e: # No "as", comma instead
pass
####################################################
## 4. Functions
@ -252,20 +304,38 @@ add(5, 6) #=> 11 and prints out "x is 5 and y is 6"
# Another way to call functions is with keyword arguments
add(y=6, x=5) # Keyword arguments can arrive in any order.
# You can define functions that take a variable number of positional arguments
# You can define functions that take a variable number of
# positional arguments
def varargs(*args):
return args
varargs(1, 2, 3) #=> (1,2,3)
# You can define functions that take a variable number of keyword arguments
# You can define functions that take a variable number of
# keyword arguments, as well
def keyword_args(**kwargs):
return kwargs
# Let's call it to see what happens
keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}
# You can do both at once, if you like
def all_the_args(*args, **kwargs):
print args
print kwargs
"""
all_the_args(1, 2, a=3, b=4) prints:
[1, 2]
{"a": 3, "b": 4}
"""
# You can also use * and ** when calling a function
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
foo(*args) # equivalent to foo(1, 2, 3, 4)
foo(**kwargs) # equivalent to foo(a=3, b=4)
foo(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
# Python has first class functions
def create_adder(x):
@ -273,7 +343,7 @@ def create_adder(x):
return x + y
return adder
add_10 = create_adder(10):
add_10 = create_adder(10)
add_10(3) #=> 13
# There are also anonymous functions
@ -329,9 +399,11 @@ print j.say("hello") #prints out "Joel: hello"
i.get_species() #=> "H. sapiens"
# Change the shared attribute
i.species = "H. neanderthalensis"
Human.species = "H. neanderthalensis"
i.get_species() #=> "H. neanderthalensis"
j.get_species() #=> "H. neanderthalensis"
# Call the static method
Human.grunt() #=> "*grunt*"
```