Remove trailing spaces.

This commit is contained in:
Jonas Friedemann Grote 2017-09-08 12:38:30 +02:00
parent 2a3fbe26b6
commit be9e47d810

View File

@ -12,12 +12,12 @@ filename: learnscala-de.scala
lang: de-de
---
Scala ist eine funktionale und objektorientierte Programmiersprache
für die Java Virtual Machine (JVM), um allgemeine Programmieraufgaben
zu erledigen. Scala hat einen akademischen Hintergrund und wurde an
Scala ist eine funktionale und objektorientierte Programmiersprache
für die Java Virtual Machine (JVM), um allgemeine Programmieraufgaben
zu erledigen. Scala hat einen akademischen Hintergrund und wurde an
der EPFL (Lausanne / Schweiz) unter der Leitung von Martin Odersky entwickelt.
```scala
```scala
/*
Scala Umgebung einrichten:
@ -28,9 +28,9 @@ Scala Umgebung einrichten:
scala>
Die REPL (Read-Eval-Print Loop) ist der interaktive Scala Interpreter.
Hier kann man jeden Scala Ausdruck verwenden und das Ergebnis wird direkt
ausgegeben.
Die REPL (Read-Eval-Print Loop) ist der interaktive Scala Interpreter.
Hier kann man jeden Scala Ausdruck verwenden und das Ergebnis wird direkt
ausgegeben.
Als nächstes beschäftigen wir uns mit ein paar Scala Basics.
*/
@ -42,25 +42,25 @@ Als nächstes beschäftigen wir uns mit ein paar Scala Basics.
// Einzeilige Kommentare beginnen mit zwei Slashes
/*
Mehrzeilige Kommentare, starten
Mehrzeilige Kommentare, starten
mit einem Slash-Stern und enden mit einem Stern-Slash
*/
// Einen Wert, und eine zusätzliche neue Zeile ausgeben
// Einen Wert, und eine zusätzliche neue Zeile ausgeben
println("Hello world!")
println(10)
// Einen Wert, ohne eine zusätzliche neue Zeile ausgeben
// Einen Wert, ohne eine zusätzliche neue Zeile ausgeben
print("Hello world")
/*
Variablen werden entweder mit var oder val deklariert.
Deklarationen mit val sind immutable, also unveränderlich
Deklarationen mit var sind mutable, also veränderlich
Immutability ist gut.
Variablen werden entweder mit var oder val deklariert.
Deklarationen mit val sind immutable, also unveränderlich
Deklarationen mit var sind mutable, also veränderlich
Immutability ist gut.
*/
val x = 10 // x ist 10
x = 20 // error: reassignment to val
@ -68,29 +68,29 @@ var y = 10
y = 20 // y ist jetzt 20
/*
Scala ist eine statisch getypte Sprache, auch wenn wir in dem o.g. Beispiel
keine Typen an x und y geschrieben haben.
In Scala ist etwas eingebaut, was sich Type Inference nennt. Das heißt das der
Scala Compiler in den meisten Fällen erraten kann, von welchen Typ eine Variable ist,
so dass der Typ nicht jedes mal angegeben werden muss.
Einen Typ gibt man bei einer Variablendeklaration wie folgt an:
Scala ist eine statisch getypte Sprache, auch wenn wir in dem o.g. Beispiel
keine Typen an x und y geschrieben haben.
In Scala ist etwas eingebaut, was sich Type Inference nennt. Das heißt das der
Scala Compiler in den meisten Fällen erraten kann, von welchen Typ eine Variable ist,
so dass der Typ nicht jedes mal angegeben werden muss.
Einen Typ gibt man bei einer Variablendeklaration wie folgt an:
*/
val z: Int = 10
val a: Double = 1.0
// Bei automatischer Umwandlung von Int auf Double wird aus 10 eine 10.0
// Bei automatischer Umwandlung von Int auf Double wird aus 10 eine 10.0
val b: Double = 10
// Boolean Werte
// Boolean Werte
true
false
// Boolean Operationen
// Boolean Operationen
!true // false
!false // true
@ -98,7 +98,7 @@ true == false // false
10 > 5 // true
// Mathematische Operationen sind wie gewohnt
// Mathematische Operationen sind wie gewohnt
1 + 1 // 2
2 - 1 // 1
@ -108,44 +108,44 @@ true == false // false
6.0 / 4 // 1.5
// Die Auswertung eines Ausdrucks in der REPL gibt den Typ
// und das Ergebnis zurück.
// Die Auswertung eines Ausdrucks in der REPL gibt den Typ
// und das Ergebnis zurück.
scala> 1 + 7
res29: Int = 8
/*
Das bedeutet, dass das Resultat der Auswertung von 1 + 7 ein Objekt
von Typ Int ist und einen Wert 0 hat.
"res29" ist ein sequentiell generierter name, um das Ergebnis des
Ausdrucks zu speichern. Dieser Wert kann bei Dir anders sein...
Das bedeutet, dass das Resultat der Auswertung von 1 + 7 ein Objekt
von Typ Int ist und einen Wert 0 hat.
"res29" ist ein sequentiell generierter name, um das Ergebnis des
Ausdrucks zu speichern. Dieser Wert kann bei Dir anders sein...
*/
"Scala strings werden in doppelten Anführungszeichen eingeschlossen"
'a' // A Scala Char
// 'Einzeln ge-quotete strings gibt es nicht!' <= This causes an error
// Für Strings gibt es die üblichen Java Methoden
"Scala strings werden in doppelten Anführungszeichen eingeschlossen"
'a' // A Scala Char
// 'Einzeln ge-quotete strings gibt es nicht!' <= This causes an error
// Für Strings gibt es die üblichen Java Methoden
"hello world".length
"hello world".substring(2, 6)
"hello world".replace("C", "3")
// Zusätzlich gibt es noch extra Scala Methoden
// siehe: scala.collection.immutable.StringOps
// Zusätzlich gibt es noch extra Scala Methoden
// siehe: scala.collection.immutable.StringOps
"hello world".take(5)
"hello world".drop(5)
// String interpolation: prefix "s"
// String interpolation: prefix "s"
val n = 45
s"We have $n apples" // => "We have 45 apples"
// Ausdrücke im Innern von interpolierten Strings gibt es auch
// Ausdrücke im Innern von interpolierten Strings gibt es auch
val a = Array(11, 9, 6)
val n = 100
@ -154,42 +154,42 @@ s"We have double the amount of ${n / 2.0} in apples." // => "We have double the
s"Power of 2: ${math.pow(2, 2)}" // => "Power of 2: 4"
// Formatierung der interpolierten Strings mit dem prefix "f"
// Formatierung der interpolierten Strings mit dem prefix "f"
f"Power of 5: ${math.pow(5, 2)}%1.0f" // "Power of 5: 25"
f"Square root of 122: ${math.sqrt(122)}%1.4f" // "Square root of 122: 11.0454"
// Raw Strings, ignorieren Sonderzeichen.
// Raw Strings, ignorieren Sonderzeichen.
raw"New line feed: \n. Carriage return: \r." // => "New line feed: \n. Carriage return: \r."
// Manche Zeichen müssen "escaped" werden, z.B.
// ein doppeltes Anführungszeichen in innern eines Strings.
// Manche Zeichen müssen "escaped" werden, z.B.
// ein doppeltes Anführungszeichen in innern eines Strings.
"They stood outside the \"Rose and Crown\"" // => "They stood outside the "Rose and Crown""
// Dreifache Anführungszeichen erlauben es, dass ein String über mehrere Zeilen geht
// und Anführungszeichen enthalten kann.
// Dreifache Anführungszeichen erlauben es, dass ein String über mehrere Zeilen geht
// und Anführungszeichen enthalten kann.
val html = """<form id="daform">
<p>Press belo', Joe</p>
<input type="submit">
</form>"""
/////////////////////////////////////////////////
// 2. Funktionen
/////////////////////////////////////////////////
// Funktionen werden so definiert
//
// def functionName(args...): ReturnType = { body... }
//
// Beachte: Es gibt kein return Schlüsselwort. In Scala ist der letzte Ausdruck
// in einer Funktion der Rückgabewert.
// Funktionen werden so definiert
//
// def functionName(args...): ReturnType = { body... }
//
// Beachte: Es gibt kein return Schlüsselwort. In Scala ist der letzte Ausdruck
// in einer Funktion der Rückgabewert.
def sumOfSquares(x: Int, y: Int): Int = {
val x2 = x * x
@ -198,75 +198,75 @@ def sumOfSquares(x: Int, y: Int): Int = {
}
// Die geschweiften Klammern können weggelassen werden, wenn
// die Funktion nur aus einem einzigen Ausdruck besteht:
// Die geschweiften Klammern können weggelassen werden, wenn
// die Funktion nur aus einem einzigen Ausdruck besteht:
def sumOfSquaresShort(x: Int, y: Int): Int = x * x + y * y
// Syntax für Funktionsaufrufe:
// Syntax für Funktionsaufrufe:
sumOfSquares(3, 4) // => 25
// In den meisten Fällen (mit Ausnahme von rekursiven Funktionen), können
// Rückgabetypen auch weggelassen werden, da dieselbe Typ Inference, wie bei
// Variablen, auch bei Funktionen greift:
// In den meisten Fällen (mit Ausnahme von rekursiven Funktionen), können
// Rückgabetypen auch weggelassen werden, da dieselbe Typ Inference, wie bei
// Variablen, auch bei Funktionen greift:
def sq(x: Int) = x * x // Compiler errät, dass der return type Int ist
// Funktionen können default parameter haben:
// Funktionen können default parameter haben:
def addWithDefault(x: Int, y: Int = 5) = x + y
addWithDefault(1, 2) // => 3
addWithDefault(1) // => 6
// Anonyme Funktionen sehen so aus:
// Anonyme Funktionen sehen so aus:
(x: Int) => x * x
// Im Gegensatz zu def bei normalen Funktionen, kann bei anonymen Funktionen
// sogar der Eingabetyp weggelassen werden, wenn der Kontext klar ist.
// Beachte den Typ "Int => Int", dies beschreibt eine Funktion,
// welche Int als Parameter erwartet und Int zurückgibt.
// Im Gegensatz zu def bei normalen Funktionen, kann bei anonymen Funktionen
// sogar der Eingabetyp weggelassen werden, wenn der Kontext klar ist.
// Beachte den Typ "Int => Int", dies beschreibt eine Funktion,
// welche Int als Parameter erwartet und Int zurückgibt.
val sq: Int => Int = x => x * x
// Anonyme Funktionen benutzt man ganz normal:
// Anonyme Funktionen benutzt man ganz normal:
sq(10) // => 100
// Wenn ein Parameter einer anonymen Funktion nur einmal verwendet wird,
// bietet Scala einen sehr kurzen Weg diesen Parameter zu benutzen,
// indem die Parameter als Unterstrich "_" in der Parameterreihenfolge
// verwendet werden. Diese anonymen Funktionen werden sehr häufig
// verwendet.
// Wenn ein Parameter einer anonymen Funktion nur einmal verwendet wird,
// bietet Scala einen sehr kurzen Weg diesen Parameter zu benutzen,
// indem die Parameter als Unterstrich "_" in der Parameterreihenfolge
// verwendet werden. Diese anonymen Funktionen werden sehr häufig
// verwendet.
val addOne: Int => Int = _ + 1
val weirdSum: (Int, Int) => Int = (_ * 2 + _ * 3)
addOne(5) // => 6
weirdSum(2, 4) // => 16
val addOne: Int => Int = _ + 1
val weirdSum: (Int, Int) => Int = (_ * 2 + _ * 3)
addOne(5) // => 6
weirdSum(2, 4) // => 16
// Es gibt einen keyword return in Scala. Allerdings ist seine Verwendung
// nicht immer ratsam und kann fehlerbehaftet sein. "return" gibt nur aus
// dem innersten def, welches den return Ausdruck umgibt, zurück.
// "return" hat keinen Effekt in anonymen Funktionen:
// Es gibt einen keyword return in Scala. Allerdings ist seine Verwendung
// nicht immer ratsam und kann fehlerbehaftet sein. "return" gibt nur aus
// dem innersten def, welches den return Ausdruck umgibt, zurück.
// "return" hat keinen Effekt in anonymen Funktionen:
def foo(x: Int): Int = {
val anonFunc: Int => Int = { z =>
if (z > 5)
return z // Zeile macht z zum return Wert von foo
else
z + 2 // Zeile ist der return Wert von anonFunc
}
anonFunc(x) // Zeile ist der return Wert von foo
}
def foo(x: Int): Int = {
val anonFunc: Int => Int = { z =>
if (z > 5)
return z // Zeile macht z zum return Wert von foo
else
z + 2 // Zeile ist der return Wert von anonFunc
}
anonFunc(x) // Zeile ist der return Wert von foo
}
/////////////////////////////////////////////////
@ -280,25 +280,25 @@ val r = 1 to 5
r.foreach(println)
r foreach println
(5 to 1 by -1) foreach (println)
// Scala ist syntaktisch sehr großzügig, Semikolons am Zeilenende
// sind optional, beim Aufruf von Methoden können die Punkte
// und Klammern entfallen und Operatoren sind im Grunde austauschbare Methoden
// while Schleife
// Scala ist syntaktisch sehr großzügig, Semikolons am Zeilenende
// sind optional, beim Aufruf von Methoden können die Punkte
// und Klammern entfallen und Operatoren sind im Grunde austauschbare Methoden
// while Schleife
var i = 0
while (i < 10) { println("i " + i); i += 1 }
i // i ausgeben, res3: Int = 10
// Beachte: while ist eine Schleife im klassischen Sinne -
// Sie läuft sequentiell ab und verändert die loop-Variable.
// While in Scala läuft schneller ab als in Java und die o.g.
// Kombinatoren und Zusammenlegungen sind einfacher zu verstehen
// Beachte: while ist eine Schleife im klassischen Sinne -
// Sie läuft sequentiell ab und verändert die loop-Variable.
// While in Scala läuft schneller ab als in Java und die o.g.
// Kombinatoren und Zusammenlegungen sind einfacher zu verstehen
// und zu parellelisieren.
// Ein do while Schleife
// Ein do while Schleife
do {
println("x ist immer noch weniger wie 10")
@ -306,10 +306,10 @@ do {
} while (x < 10)
// Endrekursionen sind ideomatisch um sich wiederholende
// Dinge in Scala zu lösen. Rekursive Funtionen benötigen explizit einen
// return Typ, der Compiler kann ihn nicht erraten.
// Unit, in diesem Beispiel.
// Endrekursionen sind ideomatisch um sich wiederholende
// Dinge in Scala zu lösen. Rekursive Funtionen benötigen explizit einen
// return Typ, der Compiler kann ihn nicht erraten.
// Unit, in diesem Beispiel.
def showNumbersInRange(a: Int, b: Int): Unit = {
print(a)
@ -360,7 +360,7 @@ val s = Set(1,1,3,3,7)
s: scala.collection.immutable.Set[Int] = Set(1, 3, 7)
// Tuple - Speichert beliebige Daten und "verbindet" sie miteinander
// Ein Tuple ist keine Collection.
// Ein Tuple ist keine Collection.
(1, 2)
(4, 3, 2)
@ -368,15 +368,15 @@ s: scala.collection.immutable.Set[Int] = Set(1, 3, 7)
(a, 2, "three")
// Hier ist der Rückgabewert der Funktion ein Tuple
// Die Funktion gibt das Ergebnis, so wie den Rest zurück.
// Hier ist der Rückgabewert der Funktion ein Tuple
// Die Funktion gibt das Ergebnis, so wie den Rest zurück.
val divideInts = (x: Int, y: Int) => (x / y, x % y)
divideInts(10, 3)
// Um die Elemente eines Tuples anzusprechen, benutzt man diese
// Notation: _._n wobei n der index des Elements ist (Index startet bei 1)
// Um die Elemente eines Tuples anzusprechen, benutzt man diese
// Notation: _._n wobei n der index des Elements ist (Index startet bei 1)
val d = divideInts(10, 3)
d._1
@ -388,32 +388,32 @@ d._2
/////////////////////////////////////////////////
/*
Bislang waren alle gezeigten Sprachelemente einfache Ausdrücke, welche zwar
zum Ausprobieren und Lernen in der REPL gut geeignet sind, jedoch in
einem Scala file selten alleine zu finden sind.
Die einzigen Top-Level Konstrukte in Scala sind nämlich:
Bislang waren alle gezeigten Sprachelemente einfache Ausdrücke, welche zwar
zum Ausprobieren und Lernen in der REPL gut geeignet sind, jedoch in
einem Scala file selten alleine zu finden sind.
Die einzigen Top-Level Konstrukte in Scala sind nämlich:
- Klassen (classes)
- Objekte (objects)
- case classes
- traits
Diesen Sprachelemente wenden wir uns jetzt zu.
Diesen Sprachelemente wenden wir uns jetzt zu.
*/
// Klassen
// Zum Erstellen von Objekten benötigt man eine Klasse, wie in vielen
// anderen Sprachen auch.
// Zum Erstellen von Objekten benötigt man eine Klasse, wie in vielen
// anderen Sprachen auch.
// erzeugt Klasse mit default Konstruktor
// erzeugt Klasse mit default Konstruktor
class Hund
scala> val t = new Hund
t: Hund = Hund@7103745
// Der Konstruktor wird direkt hinter dem Klassennamen deklariert.
// Der Konstruktor wird direkt hinter dem Klassennamen deklariert.
class Hund(sorte: String)
scala> val t = new Hund("Dackel")
@ -421,8 +421,8 @@ t: Hund = Hund@14be750c
scala> t.sorte //error: value sorte is not a member of Hund
// Per val wird aus dem Attribut ein unveränderliches Feld der Klasse
// Per var wird aus dem Attribut ein veränderliches Feld der Klasse
// Per val wird aus dem Attribut ein unveränderliches Feld der Klasse
// Per var wird aus dem Attribut ein veränderliches Feld der Klasse
class Hund(val sorte: String)
scala> val t = new Hund("Dackel")
@ -431,14 +431,14 @@ scala> t.sorte
res18: String = Dackel
// Methoden werden mit def geschrieben
// Methoden werden mit def geschrieben
def bark = "Woof, woof!"
// Felder und Methoden können public, protected und private sein
// default ist public
// private ist nur innerhalb des deklarierten Bereichs sichtbar
// Felder und Methoden können public, protected und private sein
// default ist public
// private ist nur innerhalb des deklarierten Bereichs sichtbar
class Hund {
private def x = ...
@ -446,8 +446,8 @@ class Hund {
}
// protected ist nur innerhalb des deklarierten und aller
// erbenden Bereiche sichtbar
// protected ist nur innerhalb des deklarierten und aller
// erbenden Bereiche sichtbar
class Hund {
protected def x = ...
@ -457,12 +457,12 @@ class Dackel extends Hund {
}
// Object
// Wird ein Objekt ohne das Schlüsselwort "new" instanziert, wird das sog.
// "companion object" aufgerufen. Mit dem "object" Schlüsselwort wird so
// ein Objekt (Typ UND Singleton) erstellt. Damit kann man dann eine Klasse
// benutzen ohne ein Objekt instanziieren zu müssen.
// Ein gültiges companion Objekt einer Klasse ist es aber erst dann, wenn
// es genauso heisst und in derselben Datei wie die Klasse definiert wurde.
// Wird ein Objekt ohne das Schlüsselwort "new" instanziert, wird das sog.
// "companion object" aufgerufen. Mit dem "object" Schlüsselwort wird so
// ein Objekt (Typ UND Singleton) erstellt. Damit kann man dann eine Klasse
// benutzen ohne ein Objekt instanziieren zu müssen.
// Ein gültiges companion Objekt einer Klasse ist es aber erst dann, wenn
// es genauso heisst und in derselben Datei wie die Klasse definiert wurde.
object Hund {
def alleSorten = List("Pitbull", "Dackel", "Retriever")
@ -470,50 +470,50 @@ object Hund {
}
// Case classes
// Fallklassen bzw. Case classes sind Klassen die normale Klassen um extra
// Funktionalität erweitern. Mit Case Klassen bekommt man ein paar
// Dinge einfach dazu, ohne sich darum kümmern zu müssen. Z.B.
// ein companion object mit den entsprechenden Methoden,
// Hilfsmethoden wie toString(), equals() und hashCode() und auch noch
// Getter für unsere Attribute (das Angeben von val entfällt dadurch)
// Fallklassen bzw. Case classes sind Klassen die normale Klassen um extra
// Funktionalität erweitern. Mit Case Klassen bekommt man ein paar
// Dinge einfach dazu, ohne sich darum kümmern zu müssen. Z.B.
// ein companion object mit den entsprechenden Methoden,
// Hilfsmethoden wie toString(), equals() und hashCode() und auch noch
// Getter für unsere Attribute (das Angeben von val entfällt dadurch)
class Person(val name: String)
class Hund(val sorte: String, val farbe: String, val halter: Person)
// Es genügt das Schlüsselwort case vor die Klasse zu schreiben.
// Es genügt das Schlüsselwort case vor die Klasse zu schreiben.
case class Person(name: String)
case class Hund(sorte: String, farbe: String, halter: Person)
// Für neue Instanzen brauch man kein "new"
// Für neue Instanzen brauch man kein "new"
val dackel = Hund("dackel", "grau", Person("peter"))
val dogge = Hund("dogge", "grau", Person("peter"))
// getter
// getter
dackel.halter // => Person = Person(peter)
// equals
// equals
dogge == dackel // => false
// copy
// otherGeorge == Person("george", "9876")
// copy
// otherGeorge == Person("george", "9876")
val otherGeorge = george.copy(phoneNumber = "9876")
// Traits
// Ähnlich wie Java interfaces, definiert man mit traits einen Objekttyp
// und Methodensignaturen. Scala erlaubt allerdings das teilweise
// implementieren dieser Methoden. Konstruktorparameter sind nicht erlaubt.
// Traits können von anderen Traits oder Klassen erben, aber nur von
// parameterlosen.
// Ähnlich wie Java interfaces, definiert man mit traits einen Objekttyp
// und Methodensignaturen. Scala erlaubt allerdings das teilweise
// implementieren dieser Methoden. Konstruktorparameter sind nicht erlaubt.
// Traits können von anderen Traits oder Klassen erben, aber nur von
// parameterlosen.
trait Hund {
def sorte: String
@ -527,16 +527,16 @@ class Bernhardiner extends Hund{
def beissen = false
}
scala> b
res0: Bernhardiner = Bernhardiner@3e57cd70
scala> b.sorte
res1: String = Bernhardiner
scala> b.bellen
res2: Boolean = true
scala> b.beissen
res3: Boolean = false
scala> b
res0: Bernhardiner = Bernhardiner@3e57cd70
scala> b.sorte
res1: String = Bernhardiner
scala> b.bellen
res2: Boolean = true
scala> b.beissen
res3: Boolean = false
// Ein Trait kann auch als Mixin eingebunden werden. Die Klasse erbt vom
// ersten Trait mit dem Schlüsselwort "extends", während weitere Traits
@ -562,11 +562,11 @@ res0: String = Woof
// 6. Pattern Matching
/////////////////////////////////////////////////
// Pattern matching in Scala ist ein sehr nützliches und wesentlich
// mächtigeres Feature als Vergleichsfunktionen in Java. In Scala
// benötigt ein case Statement kein "break", ein fall-through gibt es nicht.
// Mehrere Überprüfungen können mit einem Statement gemacht werden.
// Pattern matching wird mit dem Schlüsselwort "match" gemacht.
// Pattern matching in Scala ist ein sehr nützliches und wesentlich
// mächtigeres Feature als Vergleichsfunktionen in Java. In Scala
// benötigt ein case Statement kein "break", ein fall-through gibt es nicht.
// Mehrere Überprüfungen können mit einem Statement gemacht werden.
// Pattern matching wird mit dem Schlüsselwort "match" gemacht.
val x = ...
x match {
@ -576,7 +576,7 @@ x match {
}
// Pattern Matching kann auf beliebige Typen prüfen
// Pattern Matching kann auf beliebige Typen prüfen
val any: Any = ...
val gleicht = any match {
@ -588,7 +588,7 @@ val gleicht = any match {
}
// und auf Objektgleichheit
// und auf Objektgleichheit
def matchPerson(person: Person): String = person match {
case Person("George", nummer) => "George! Die Nummer ist " + number
@ -597,7 +597,7 @@ def matchPerson(person: Person): String = person match {
}
// Und viele mehr...
// Und viele mehr...
val email = "(.*)@(.*)".r // regex
def matchEverything(obj: Any): String = obj match {
@ -620,8 +620,8 @@ def matchEverything(obj: Any): String = obj match {
}
// Jedes Objekt mit einer "unapply" Methode kann per Pattern geprüft werden
// Ganze Funktionen können Patterns sein
// Jedes Objekt mit einer "unapply" Methode kann per Pattern geprüft werden
// Ganze Funktionen können Patterns sein
val patternFunc: Person => String = {
case Person("George", number) => s"George's number: $number"
@ -633,13 +633,13 @@ val patternFunc: Person => String = {
// 37. Higher-order functions
/////////////////////////////////////////////////
Scala erlaubt, das Methoden und Funktion wiederum Funtionen und Methoden
als Aufrufparameter oder Return Wert verwenden. Diese Methoden heissen
higher-order functions
Es gibt zahlreiche higher-order functions nicht nur für Listen, auch für
die meisten anderen Collection Typen, sowie andere Klassen in Scala
Nennenswerte sind:
"filter", "map", "reduce", "foldLeft"/"foldRight", "exists", "forall"
Scala erlaubt, das Methoden und Funktion wiederum Funtionen und Methoden
als Aufrufparameter oder Return Wert verwenden. Diese Methoden heissen
higher-order functions
Es gibt zahlreiche higher-order functions nicht nur für Listen, auch für
die meisten anderen Collection Typen, sowie andere Klassen in Scala
Nennenswerte sind:
"filter", "map", "reduce", "foldLeft"/"foldRight", "exists", "forall"
## List
@ -649,39 +649,39 @@ val resultExists4 = list.exists(isEqualToFour)
## map
// map nimmt eine Funktion und führt sie auf jedem Element aus und erzeugt
// eine neue Liste
// Funktion erwartet ein Int und returned ein Int
// map nimmt eine Funktion und führt sie auf jedem Element aus und erzeugt
// eine neue Liste
val add10: Int => Int = _ + 10
// Funktion erwartet ein Int und returned ein Int
val add10: Int => Int = _ + 10
// add10 wird auf jedes Element angewendet
// add10 wird auf jedes Element angewendet
List(1, 2, 3) map add10 // => List(11, 12, 13)
// Anonyme Funktionen können anstatt definierter Funktionen verwendet werden
// Anonyme Funktionen können anstatt definierter Funktionen verwendet werden
List(1, 2, 3) map (x => x + 10)
// Der Unterstrich wird anstelle eines Parameters einer anonymen Funktion
// verwendet. Er wird an die Variable gebunden.
// Der Unterstrich wird anstelle eines Parameters einer anonymen Funktion
// verwendet. Er wird an die Variable gebunden.
List(1, 2, 3) map (_ + 10)
// Wenn der anonyme Block und die Funtion beide EIN Argument erwarten,
// kann sogar der Unterstrich weggelassen werden.
// Wenn der anonyme Block und die Funtion beide EIN Argument erwarten,
// kann sogar der Unterstrich weggelassen werden.
List("Dom", "Bob", "Natalia") foreach println
// filter
// filter nimmt ein Prädikat (eine Funktion von A -> Boolean) und findet
// alle Elemente die auf das Prädikat passen
// filter nimmt ein Prädikat (eine Funktion von A -> Boolean) und findet
// alle Elemente die auf das Prädikat passen
List(1, 2, 3) filter (_ > 2) // => List(3)
case class Person(name: String, age: Int)
@ -692,19 +692,19 @@ List(
// reduce
// reduce nimmt zwei Elemente und kombiniert sie zu einem Element,
// und zwar solange bis nur noch ein Element da ist.
// reduce nimmt zwei Elemente und kombiniert sie zu einem Element,
// und zwar solange bis nur noch ein Element da ist.
// foreach
// foreach gibt es für einige Collections
// foreach gibt es für einige Collections
val aListOfNumbers = List(1, 2, 3, 4, 10, 20, 100)
aListOfNumbers foreach (x => println(x))
aListOfNumbers foreach println
// For comprehensions
// Eine for-comprehension definiert eine Beziehung zwischen zwei Datensets.
// Dies ist keine for-Schleife.
// Eine for-comprehension definiert eine Beziehung zwischen zwei Datensets.
// Dies ist keine for-Schleife.
for { n <- s } yield sq(n)
val nSquared2 = for { n <- s } yield sq(n)
@ -716,58 +716,58 @@ for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared
// 8. Implicits
/////////////////////////////////////////////////
// **ACHTUNG:**
// **ACHTUNG:**
// Implicits sind ein sehr mächtiges Sprachfeature von Scala.
// Es sehr einfach
// sie falsch zu benutzen und Anfänger sollten sie mit Vorsicht oder am
// besten erst dann benutzen, wenn man versteht wie sie funktionieren.
// Dieses Tutorial enthält Implicits, da sie in Scala an jeder Stelle
// vorkommen und man auch mit einer Lib die Implicits benutzt nichts sinnvolles
// machen kann.
// Hier soll ein Grundverständnis geschaffen werden, wie sie funktionieren.
// Es sehr einfach
// sie falsch zu benutzen und Anfänger sollten sie mit Vorsicht oder am
// besten erst dann benutzen, wenn man versteht wie sie funktionieren.
// Dieses Tutorial enthält Implicits, da sie in Scala an jeder Stelle
// vorkommen und man auch mit einer Lib die Implicits benutzt nichts sinnvolles
// machen kann.
// Hier soll ein Grundverständnis geschaffen werden, wie sie funktionieren.
// Mit dem Schlüsselwort implicit können Methoden, Werte, Funktion, Objekte
// zu "implicit Methods" werden.
// Mit dem Schlüsselwort implicit können Methoden, Werte, Funktion, Objekte
// zu "implicit Methods" werden.
implicit val myImplicitInt = 100
implicit def myImplicitFunction(sorte: String) = new Hund("Golden " + sorte)
// implicit ändert nicht das Verhalten eines Wertes oder einer Funktion
// implicit ändert nicht das Verhalten eines Wertes oder einer Funktion
myImplicitInt + 2 // => 102
myImplicitFunction("Pitbull").sorte // => "Golden Pitbull"
// Der Unterschied ist, dass diese Werte ausgewählt werden können, wenn ein
// anderer Codeteil einen implicit Wert benötigt, zum Beispiel innerhalb von
// implicit Funktionsparametern
// Diese Funktion hat zwei Parameter: einen normalen und einen implicit
// Der Unterschied ist, dass diese Werte ausgewählt werden können, wenn ein
// anderer Codeteil einen implicit Wert benötigt, zum Beispiel innerhalb von
// implicit Funktionsparametern
// Diese Funktion hat zwei Parameter: einen normalen und einen implicit
def sendGreetings(toWhom: String)(implicit howMany: Int) =
s"Hello $toWhom, $howMany blessings to you and yours!"
// Werden beide Parameter gefüllt, verhält sich die Funktion wie erwartet
// Werden beide Parameter gefüllt, verhält sich die Funktion wie erwartet
sendGreetings("John")(1000) // => "Hello John, 1000 blessings to you and yours!"
// Wird der implicit Parameter jedoch weggelassen, wird ein anderer
// implicit Wert vom gleichen Typ genommen. Der Compiler sucht im
// lexikalischen Scope und im companion object nach einem implicit Wert,
// der vom Typ passt, oder nach einer implicit Methode mit der er in den
// geforderten Typ konvertieren kann.
// Hier also: "myImplicitInt", da ein Int gesucht wird
// Wird der implicit Parameter jedoch weggelassen, wird ein anderer
// implicit Wert vom gleichen Typ genommen. Der Compiler sucht im
// lexikalischen Scope und im companion object nach einem implicit Wert,
// der vom Typ passt, oder nach einer implicit Methode mit der er in den
// geforderten Typ konvertieren kann.
// Hier also: "myImplicitInt", da ein Int gesucht wird
sendGreetings("Jane") // => "Hello Jane, 100 blessings to you and yours!"
// bzw. "myImplicitFunction"
// Der String wird erst mit Hilfe der Funktion in Hund konvertiert, und
// dann wird die Methode aufgerufen
// bzw. "myImplicitFunction"
// Der String wird erst mit Hilfe der Funktion in Hund konvertiert, und
// dann wird die Methode aufgerufen
"Retriever".sorte // => "Golden Retriever"
@ -780,27 +780,27 @@ sendGreetings("Jane") // => "Hello Jane, 100 blessings to you and yours!"
import scala.collection.immutable.List
// Importiere alle Unterpackages
// Importiere alle Unterpackages
import scala.collection.immutable._
// Importiere verschiedene Klassen mit einem Statement
// Importiere verschiedene Klassen mit einem Statement
import scala.collection.immutable.{List, Map}
// Einen Import kann man mit '=>' umbenennen
// Einen Import kann man mit '=>' umbenennen
import scala.collection.immutable.{List => ImmutableList}
// Importiere alle Klasses, mit Ausnahem von....
// Hier ohne: Map and Set:
// Importiere alle Klasses, mit Ausnahem von....
// Hier ohne: Map and Set:
import scala.collection.immutable.{Map => _, Set => _, _}
// Main
// Main
object Application {
def main(args: Array[String]): Unit = {
@ -810,14 +810,14 @@ object Application {
// I/O
// Eine Datei Zeile für Zeile lesen
// Eine Datei Zeile für Zeile lesen
import scala.io.Source
for(line <- Source.fromFile("myfile.txt").getLines())
println(line)
// Eine Datei schreiben
// Eine Datei schreiben
val writer = new PrintWriter("myfile.txt")
writer.write("Schreibe Zeile" + util.Properties.lineSeparator)
@ -826,7 +826,7 @@ writer.close()
```
## Weiterführende Hinweise
## Weiterführende Hinweise
// DE
* [Scala Tutorial](https://scalatutorial.wordpress.com)