/* Set yourself up: 1) Download Scala - http://www.scala-lang.org/downloads 2) unzip/untar in your favourite location and put the bin subdir on the path 3) Start a scala REPL by typing scala. You should see the prompt: scala> This is the so called REPL. You can run commands in the REPL. Let do just that: */ println(10) // prints the integer 10 println("Boo!") // printlns the string Boo! // Evaluating a command gives you the type and value of the result 1 + 7 /* The above line results in: scala> 1 + 7 res29: Int = 8 This means the result of evaluating 1 + 7 is an object of type Int with a value of 8 1+7 will give you the same result */ // Everything is an object, including a function type these in the repl: 7 // results in res30: Int = 7 (res30 is just a generated var name for the result) // The next line gives you a function that takes an Int and returns it squared (x:Int) => x * x // You can assign this function to an identifier, like this: val sq = (x:Int) => x * x /* The above says this sq: Int => Int = Which means that this time we gave an explicit name to the value - sq is a function that take an Int and returns Int. sq can be executed as follows: */ sq(10) // Gives you this: res33: Int = 100. The result is the Int with a value 100 // Data structures val a = Array(1, 2, 3, 5, 8, 13) a(0) a(3) a(21) // Throws an exception val m = Map("fork" -> "tenedor", "spoon" -> "cuchara", "knife" -> "cuchillo") m("fork") m("spoon") m("bottle") // Throws an exception val safeM = m.withDefaultValue("no lo se") safeM("bottle") val s = Set(1, 3, 7) s(0) s(1) // Tuples // Combinators s.map(sq) val sSquared = s. map(sq) sSquared.filter(_ < 10) sSquared.reduce (_+_) // For comprehensions for { n <- s } yield sq(n) val nSquared2 = for { n <- s } yield sq(n) for { n <- nSquared2 if n < 10 } yield n for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared // Conditionals val x = 10 if (x == 1) println("yeah") if (x == 10) println("yeah") if (x == 11) println("yeah") // Object oriented features