--- language: racket filename: learnracket.rkt contributors: - ["th3rac25", "https://github.com/voila"] - ["Eli Barzilay", "https://github.com/elibarzilay"] - ["Gustavo Schmidt", "https://github.com/gustavoschmidt"] - ["Duong H. Nguyen", "https://github.com/cmpitg"] - ["Keyan Zhang", "https://github.com/keyanzhang"] --- Racket is a general purpose, multi-paradigm programming language in the Lisp/Scheme family. Feedback is appreciated! You can reach me at [@th3rac25](http://twitter.com/th3rac25) or th3rac25 [at] [google's email service] ```racket #lang racket ; defines the language we are using ;;; Comments ;; Single line comments start with a semicolon #| Block comments can span multiple lines and... #| they can be nested! |# |# ;; S-expression comments discard the following expression, ;; useful to comment expressions when debugging #; (this expression is discarded) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1. Primitive Datatypes and Operators ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Numbers 9999999999999999999999 ; integers #b111 ; binary => 7 #o111 ; octal => 73 #x111 ; hexadecimal => 273 3.14 ; reals 6.02e+23 1/2 ; rationals 1+2i ; complex numbers ;; Function application is written (f x y z ...) ;; where f is a function and x, y, z, ... are operands ;; If you want to create a literal list of data, use ' to stop it from ;; being evaluated '(+ 1 2) ; => (+ 1 2) ;; Now, some arithmetic operations (+ 1 1) ; => 2 (- 8 1) ; => 7 (* 10 2) ; => 20 (expt 2 3) ; => 8 (quotient 5 2) ; => 2 (remainder 5 2) ; => 1 (/ 35 5) ; => 7 (/ 1 3) ; => 1/3 (exact->inexact 1/3) ; => 0.3333333333333333 (+ 1+2i 2-3i) ; => 3-1i ;;; Booleans #t ; for true #f ; for false -- any value other than #f is true (not #t) ; => #f (and 0 #f (error "doesn't get here")) ; => #f (or #f 0 (error "doesn't get here")) ; => 0 ;;; Characters #\A ; => #\A #\λ ; => #\λ #\u03BB ; => #\λ ;;; Strings are fixed-length array of characters. "Hello, world!" "Benjamin \"Bugsy\" Siegel" ; backslash is an escaping character "Foo\tbar\41\x21\u0021\a\r\n" ; includes C escapes, Unicode "λx:(μα.α→α).xx" ; can include Unicode characters ;; Strings can be added too! (string-append "Hello " "world!") ; => "Hello world!" ;; A string can be treated like a list of characters (string-ref "Apple" 0) ; => #\A ;; format can be used to format strings: (format "~a can be ~a" "strings" "formatted") ;; Printing is pretty easy (printf "I'm Racket. Nice to meet you!\n") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 2. Variables ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; You can create a variable using define ;; a variable name can use any character except: ()[]{}",'`;#|\ (define some-var 5) some-var ; => 5 ;; You can also use unicode characters (define ⊆ subset?) (⊆ (set 3 2) (set 1 2 3)) ; => #t ;; Accessing a previously unassigned variable is an exception ; x ; => x: undefined ... ;; Local binding: `me' is bound to "Bob" only within the (let ...) (let ([me "Bob"]) "Alice" me) ; => "Bob" ;; let* is like let, but allows you to use previous bindings in creating later bindings (let* ([x 1] [y (+ x 1)]) (* x y)) ;; finally, letrec allows you to define recursive and mutually recursive functions (letrec ([is-even? (lambda (n) (or (zero? n) (is-odd? (sub1 n))))] [is-odd? (lambda (n) (and (not (zero? n)) (is-even? (sub1 n))))]) (is-odd? 11)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 3. Structs and Collections ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Structs ; By default, structs are immutable (struct dog (name breed age)) (define my-pet (dog "lassie" "collie" 5)) my-pet ; => #<dog> ; returns whether the variable was constructed with the dog constructor (dog? my-pet) ; => #t ; accesses the name field of the variable constructed with the dog constructor (dog-name my-pet) ; => "lassie" ; You can explicitly declare a struct to be mutable with the #:mutable option (struct rgba-color (red green blue alpha) #:mutable) (define burgundy (rgba-color 144 0 32 1.0)) (set-rgba-color-green! burgundy 10) (rgba-color-green burgundy) ; => 10 ;;; Pairs (immutable) ;; `cons' constructs pairs, `car' and `cdr' extract the first ;; and second elements (cons 1 2) ; => '(1 . 2) (car (cons 1 2)) ; => 1 (cdr (cons 1 2)) ; => 2 ;;; Lists ;; Lists are linked-list data structures, made of `cons' pairs and end ;; with a `null' (or '()) to mark the end of the list (cons 1 (cons 2 (cons 3 null))) ; => '(1 2 3) ;; `list' is a convenience variadic constructor for lists (list 1 2 3) ; => '(1 2 3) ;; a quote can also be used for a literal list value '(1 2 3) ; => '(1 2 3) ;; a quasiquote (represented by the backtick character) with commas ;; can be used to evaluate functions `(1 ,(+ 1 1) 3) ; => '(1 2 3) ;; With lists, car/cdr work slightly differently (car '(1 2 3)) ; => 1 (cdr '(1 2 3)) ; => '(2 3) ;; Racket also has predefined functions on top of car and cdr, to extract parts of a list (cadr (list 1 2 3)) ; => 2 (car (cdr (list 1 2 3))) ; => 2 (cddr (list 1 2 3)) ; => '(3) (cdr (cdr (list 1 2 3))) ; => '(3) (caddr (list 1 2 3)) ; => 3 (car (cdr (cdr (list 1 2 3)))) ; => 3 ;; Can still use `cons' to add an item to the beginning of a list (cons 4 '(1 2 3)) ; => '(4 1 2 3) ;; Use `append' to add lists together (append '(1 2) '(3 4)) ; => '(1 2 3 4) ;; Lists are a very basic type, so there is a *lot* of functionality for ;; them, a few examples: (map add1 '(1 2 3)) ; => '(2 3 4) (map + '(1 2 3) '(10 20 30)) ; => '(11 22 33) (filter even? '(1 2 3 4)) ; => '(2 4) (count even? '(1 2 3 4)) ; => 2 (take '(1 2 3 4) 2) ; => '(1 2) (drop '(1 2 3 4) 2) ; => '(3 4) ;;; Vectors ;; Vectors are fixed-length arrays #(1 2 3) ; => '#(1 2 3) ;; Use `vector-append' to add vectors together (vector-append #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6) ;;; Sets ;; Create a set from a list (list->set '(1 2 3 1 2 3 3 2 1 3 2 1)) ; => (set 1 2 3) ;; Add a member with `set-add' ;; (Functional: returns the extended set rather than mutate the input) (set-add (set 1 2 3) 4) ; => (set 1 2 3 4) ;; Remove one with `set-remove' (set-remove (set 1 2 3) 1) ; => (set 2 3) ;; Test for existence with `set-member?' (set-member? (set 1 2 3) 1) ; => #t (set-member? (set 1 2 3) 4) ; => #f ;;; Hashes ;; Create an immutable hash table (mutable example below) (define m (hash 'a 1 'b 2 'c 3)) ;; Retrieve a value (hash-ref m 'a) ; => 1 ;; Retrieving a non-present value is an exception ; (hash-ref m 'd) => no value found ;; You can provide a default value for missing keys (hash-ref m 'd 0) ; => 0 ;; Use `hash-set' to extend an immutable hash table ;; (Returns the extended hash instead of mutating it) (define m2 (hash-set m 'd 4)) m2 ; => '#hash((b . 2) (a . 1) (d . 4) (c . 3)) ;; Remember, these hashes are immutable! m ; => '#hash((b . 2) (a . 1) (c . 3)) <-- no `d' ;; Use `hash-remove' to remove keys (functional too) (hash-remove m 'a) ; => '#hash((b . 2) (c . 3)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 4. Functions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Use `lambda' to create functions. ;; A function always returns the value of its last expression (lambda () "Hello World") ; => #<procedure> ;; Can also use a unicode `λ' (λ () "Hello World") ; => same function ;; Use parens to call all functions, including a lambda expression ((lambda () "Hello World")) ; => "Hello World" ((λ () "Hello World")) ; => "Hello World" ;; Assign a function to a var (define hello-world (lambda () "Hello World")) (hello-world) ; => "Hello World" ;; You can shorten this using the function definition syntactic sugar: (define (hello-world2) "Hello World") ;; The () in the above is the list of arguments for the function (define hello (lambda (name) (string-append "Hello " name))) (hello "Steve") ; => "Hello Steve" ;; ... or equivalently, using a sugared definition: (define (hello2 name) (string-append "Hello " name)) ;; You can have multi-variadic functions too, using `case-lambda' (define hello3 (case-lambda [() "Hello World"] [(name) (string-append "Hello " name)])) (hello3 "Jake") ; => "Hello Jake" (hello3) ; => "Hello World" ;; ... or specify optional arguments with a default value expression (define (hello4 [name "World"]) (string-append "Hello " name)) ;; Functions can pack extra arguments up in a list (define (count-args . args) (format "You passed ~a args: ~a" (length args) args)) (count-args 1 2 3) ; => "You passed 3 args: (1 2 3)" ;; ... or with the unsugared `lambda' form: (define count-args2 (lambda args (format "You passed ~a args: ~a" (length args) args))) ;; You can mix regular and packed arguments (define (hello-count name . args) (format "Hello ~a, you passed ~a extra args" name (length args))) (hello-count "Finn" 1 2 3) ; => "Hello Finn, you passed 3 extra args" ;; ... unsugared: (define hello-count2 (lambda (name . args) (format "Hello ~a, you passed ~a extra args" name (length args)))) ;; And with keywords (define (hello-k #:name [name "World"] #:greeting [g "Hello"] . args) (format "~a ~a, ~a extra args" g name (length args))) (hello-k) ; => "Hello World, 0 extra args" (hello-k 1 2 3) ; => "Hello World, 3 extra args" (hello-k #:greeting "Hi") ; => "Hi World, 0 extra args" (hello-k #:name "Finn" #:greeting "Hey") ; => "Hey Finn, 0 extra args" (hello-k 1 2 3 #:greeting "Hi" #:name "Finn" 4 5 6) ; => "Hi Finn, 6 extra args" ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 5. Equality ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; for numbers use `=' (= 3 3.0) ; => #t (= 2 1) ; => #f ;; `eq?' returns #t if 2 arguments refer to the same object (in memory), ;; #f otherwise. ;; In other words, it's a simple pointer comparison. (eq? '() '()) ; => #t, since there exists only one empty list in memory (let ([x '()] [y '()]) (eq? x y)) ; => #t, same as above (eq? (list 3) (list 3)) ; => #f (let ([x (list 3)] [y (list 3)]) (eq? x y)) ; => #f — not the same list in memory! (let* ([x (list 3)] [y x]) (eq? x y)) ; => #t, since x and y now point to the same stuff (eq? 'yes 'yes) ; => #t (eq? 'yes 'no) ; => #f (eq? 3 3) ; => #t — be careful here ; It’s better to use `=' for number comparisons. (eq? 3 3.0) ; => #f (eq? (expt 2 100) (expt 2 100)) ; => #f (eq? (integer->char 955) (integer->char 955)) ; => #f (eq? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #f ;; `eqv?' supports the comparison of number and character datatypes. ;; for other datatypes, `eqv?' and `eq?' return the same result. (eqv? 3 3.0) ; => #f (eqv? (expt 2 100) (expt 2 100)) ; => #t (eqv? (integer->char 955) (integer->char 955)) ; => #t (eqv? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #f ;; `equal?' supports the comparison of the following datatypes: ;; strings, byte strings, pairs, mutable pairs, vectors, boxes, ;; hash tables, and inspectable structures. ;; for other datatypes, `equal?' and `eqv?' return the same result. (equal? 3 3.0) ; => #f (equal? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #t (equal? (list 3) (list 3)) ; => #t ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 6. Control Flow ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Conditionals (if #t ; test expression "this is true" ; then expression "this is false") ; else expression ; => "this is true" ;; In conditionals, all non-#f values are treated as true (member 'Groucho '(Harpo Groucho Zeppo)) ; => '(Groucho Zeppo) (if (member 'Groucho '(Harpo Groucho Zeppo)) 'yep 'nope) ; => 'yep ;; `cond' chains a series of tests to select a result (cond [(> 2 2) (error "wrong!")] [(< 2 2) (error "wrong again!")] [else 'ok]) ; => 'ok ;;; Pattern Matching (define (fizzbuzz? n) (match (list (remainder n 3) (remainder n 5)) [(list 0 0) 'fizzbuzz] [(list 0 _) 'fizz] [(list _ 0) 'buzz] [_ #f])) (fizzbuzz? 15) ; => 'fizzbuzz (fizzbuzz? 37) ; => #f ;;; Loops ;; Looping can be done through (tail-) recursion (define (loop i) (when (< i 10) (printf "i=~a\n" i) (loop (add1 i)))) (loop 5) ; => i=5, i=6, ... ;; Similarly, with a named let (let loop ((i 0)) (when (< i 10) (printf "i=~a\n" i) (loop (add1 i)))) ; => i=0, i=1, ... ;; See below how to add a new `loop' form, but Racket already has a very ;; flexible `for' form for loops: (for ([i 10]) (printf "i=~a\n" i)) ; => i=0, i=1, ... (for ([i (in-range 5 10)]) (printf "i=~a\n" i)) ; => i=5, i=6, ... ;;; Iteration Over Other Sequences ;; `for' allows iteration over many other kinds of sequences: ;; lists, vectors, strings, sets, hash tables, etc... (for ([i (in-list '(l i s t))]) (displayln i)) (for ([i (in-vector #(v e c t o r))]) (displayln i)) (for ([i (in-string "string")]) (displayln i)) (for ([i (in-set (set 'x 'y 'z))]) (displayln i)) (for ([(k v) (in-hash (hash 'a 1 'b 2 'c 3 ))]) (printf "key:~a value:~a\n" k v)) ;;; More Complex Iterations ;; Parallel scan of multiple sequences (stops on shortest) (for ([i 10] [j '(x y z)]) (printf "~a:~a\n" i j)) ; => 0:x 1:y 2:z ;; Nested loops (for* ([i 2] [j '(x y z)]) (printf "~a:~a\n" i j)) ; => 0:x, 0:y, 0:z, 1:x, 1:y, 1:z ;; Conditions (for ([i 1000] #:when (> i 5) #:unless (odd? i) #:break (> i 10)) (printf "i=~a\n" i)) ; => i=6, i=8, i=10 ;;; Comprehensions ;; Very similar to `for' loops -- just collect the results (for/list ([i '(1 2 3)]) (add1 i)) ; => '(2 3 4) (for/list ([i '(1 2 3)] #:when (even? i)) i) ; => '(2) (for/list ([i 10] [j '(x y z)]) (list i j)) ; => '((0 x) (1 y) (2 z)) (for/list ([i 1000] #:when (> i 5) #:unless (odd? i) #:break (> i 10)) i) ; => '(6 8 10) (for/hash ([i '(1 2 3)]) (values i (number->string i))) ; => '#hash((1 . "1") (2 . "2") (3 . "3")) ;; There are many kinds of other built-in ways to collect loop values: (for/sum ([i 10]) (* i i)) ; => 285 (for/product ([i (in-range 1 11)]) (* i i)) ; => 13168189440000 (for/and ([i 10] [j (in-range 10 20)]) (< i j)) ; => #t (for/or ([i 10] [j (in-range 0 20 2)]) (= i j)) ; => #t ;; And to use any arbitrary combination, use `for/fold' (for/fold ([sum 0]) ([i '(1 2 3 4)]) (+ sum i)) ; => 10 ;; (This can often replace common imperative loops) ;;; Exceptions ;; To catch exceptions, use the `with-handlers' form (with-handlers ([exn:fail? (lambda (exn) 999)]) (+ 1 "2")) ; => 999 (with-handlers ([exn:break? (lambda (exn) "no time")]) (sleep 3) "phew") ; => "phew", but if you break it => "no time" ;; Use `raise' to throw exceptions or any other value (with-handlers ([number? ; catch numeric values raised identity]) ; return them as plain values (+ 1 (raise 2))) ; => 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 7. Mutation ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Use `set!' to assign a new value to an existing variable (define n 5) (set! n (add1 n)) n ; => 6 ;; Use boxes for explicitly mutable values (similar to pointers or ;; references in other languages) (define n* (box 5)) (set-box! n* (add1 (unbox n*))) (unbox n*) ; => 6 ;; Many Racket datatypes are immutable (pairs, lists, etc), some come in ;; both mutable and immutable flavors (strings, vectors, hash tables, ;; etc...) ;; Use `vector' or `make-vector' to create mutable vectors (define vec (vector 2 2 3 4)) (define wall (make-vector 100 'bottle-of-beer)) ;; Use vector-set! to update a slot (vector-set! vec 0 1) (vector-set! wall 99 'down) vec ; => #(1 2 3 4) ;; Create an empty mutable hash table and manipulate it (define m3 (make-hash)) (hash-set! m3 'a 1) (hash-set! m3 'b 2) (hash-set! m3 'c 3) (hash-ref m3 'a) ; => 1 (hash-ref m3 'd 0) ; => 0 (hash-remove! m3 'a) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 8. Modules ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Modules let you organize code into multiple files and reusable ;; libraries; here we use sub-modules, nested in the whole module that ;; this text makes (starting from the "#lang" line) (module cake racket/base ; define a `cake' module based on racket/base (provide print-cake) ; function exported by the module (define (print-cake n) (show " ~a " n #\.) (show " .-~a-. " n #\|) (show " | ~a | " n #\space) (show "---~a---" n #\-)) (define (show fmt n ch) ; internal function (printf fmt (make-string n ch)) (newline))) ;; Use `require' to get all `provide'd names from a module (require 'cake) ; the ' is for a local submodule (print-cake 3) ; (show "~a" 1 #\A) ; => error, `show' was not exported ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 9. Classes and Objects ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Create a class fish% (-% is idiomatic for class bindings) (define fish% (class object% (init size) ; initialization argument (super-new) ; superclass initialization ;; Field (define current-size size) ;; Public methods (define/public (get-size) current-size) (define/public (grow amt) (set! current-size (+ amt current-size))) (define/public (eat other-fish) (grow (send other-fish get-size))))) ;; Create an instance of fish% (define charlie (new fish% [size 10])) ;; Use `send' to call an object's methods (send charlie get-size) ; => 10 (send charlie grow 6) (send charlie get-size) ; => 16 ;; `fish%' is a plain "first class" value, which can get us mixins (define (add-color c%) (class c% (init color) (super-new) (define my-color color) (define/public (get-color) my-color))) (define colored-fish% (add-color fish%)) (define charlie2 (new colored-fish% [size 10] [color 'red])) (send charlie2 get-color) ;; or, with no names: (send (new (add-color fish%) [size 10] [color 'red]) get-color) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 10. Macros ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Macros let you extend the syntax of the language ;; Let's add a while loop (define-syntax-rule (while condition body ...) (let loop () (when condition body ... (loop)))) (let ([i 0]) (while (< i 10) (displayln i) (set! i (add1 i)))) ;; Macros are hygienic, you cannot clobber existing variables! (define-syntax-rule (swap! x y) ; -! is idiomatic for mutation (let ([tmp x]) (set! x y) (set! y tmp))) (define tmp 2) (define other 3) (swap! tmp other) (printf "tmp = ~a; other = ~a\n" tmp other) ;; The variable `tmp` is renamed to `tmp_1` ;; in order to avoid name conflict ;; (let ([tmp_1 tmp]) ;; (set! tmp other) ;; (set! other tmp_1)) ;; But they are still code transformations, for example: (define-syntax-rule (bad-while condition body ...) (when condition body ... (bad-while condition body ...))) ;; this macro is broken: it generates infinite code, if you try to use ;; it, the compiler will get in an infinite loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 11. Contracts ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Contracts impose constraints on values exported from modules (module bank-account racket (provide (contract-out [deposit (-> positive? any)] ; amounts are always positive [balance (-> positive?)])) (define amount 0) (define (deposit a) (set! amount (+ amount a))) (define (balance) amount) ) (require 'bank-account) (deposit 5) (balance) ; => 5 ;; Clients that attempt to deposit a non-positive amount are blamed ;; (deposit -5) ; => deposit: contract violation ;; expected: positive? ;; given: -5 ;; more details.... ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 12. Input & output ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Racket has this concept of "port", which is very similar to file ;; descriptors in other languages ;; Open "/tmp/tmp.txt" and write "Hello World" ;; This would trigger an error if the file's already existed (define out-port (open-output-file "/tmp/tmp.txt")) (displayln "Hello World" out-port) (close-output-port out-port) ;; Append to "/tmp/tmp.txt" (define out-port (open-output-file "/tmp/tmp.txt" #:exists 'append)) (displayln "Hola mundo" out-port) (close-output-port out-port) ;; Read from the file again (define in-port (open-input-file "/tmp/tmp.txt")) (displayln (read-line in-port)) ; => "Hello World" (displayln (read-line in-port)) ; => "Hola mundo" (close-input-port in-port) ;; Alternatively, with call-with-output-file you don't need to explicitly ;; close the file (call-with-output-file "/tmp/tmp.txt" #:exists 'update ; Rewrite the content (λ (out-port) (displayln "World Hello!" out-port))) ;; And call-with-input-file does the same thing for input (call-with-input-file "/tmp/tmp.txt" (λ (in-port) (displayln (read-line in-port)))) ``` ## Further Reading Still up for more? Try [Getting Started with Racket](http://docs.racket-lang.org/getting-started/)