mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-11-23 06:03:07 +03:00
642 lines
20 KiB
Markdown
642 lines
20 KiB
Markdown
---
|
|
language: Scala
|
|
filename: learnscala.scala
|
|
contributors:
|
|
- ["George Petrov", "http://github.com/petrovg"]
|
|
- ["Dominic Bou-Samra", "http://dbousamra.github.com"]
|
|
- ["Geoff Liu", "http://geoffliu.me"]
|
|
filename: learn.scala
|
|
---
|
|
|
|
Scala - the scalable language
|
|
|
|
```scala
|
|
|
|
/*
|
|
Set yourself up:
|
|
|
|
1) Download Scala - http://www.scala-lang.org/downloads
|
|
2) unzip/untar in your favourite location and put the bin subdir on the path
|
|
3) Start a scala REPL by typing scala. You should see the prompt:
|
|
|
|
scala>
|
|
|
|
This is the so called REPL (Read-Eval-Print Loop). You may type any valid
|
|
Scala expression into it, and the result will be printed. We will explain what
|
|
Scala files look like further into this tutorial, but for now, let's start
|
|
with some basics.
|
|
*/
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 1. Basics
|
|
/////////////////////////////////////////////////
|
|
|
|
// Single line comments start with two forward slashes
|
|
|
|
/*
|
|
Multi line comments, as you can already see from above, look like this.
|
|
*/
|
|
|
|
// Printing, and forcing a new line on the next print
|
|
println("Hello world!")
|
|
println(10)
|
|
|
|
// Printing, without forcing a new line on next print
|
|
print("Hello world")
|
|
|
|
// Declaring values is done using either var or val.
|
|
// val declarations are immutable, whereas var's are mutable. Immutability is
|
|
// a good thing.
|
|
val x = 10 // x is now 10
|
|
x = 20 // error: reassignment to val
|
|
var y = 10
|
|
y = 20 // y is now 20
|
|
|
|
/*
|
|
Scala is a statically typed language, yet note that in the above declarations,
|
|
we did not specify a type. This is due to a language feature called type
|
|
inference. In most cases, Scala compiler can guess what the type of a variable
|
|
is, so you don't have to type it every time. We can explicitly declare the
|
|
type of a variable like so:
|
|
*/
|
|
val z: Int = 10
|
|
val a: Double = 1.0
|
|
|
|
// Notice automatic conversion from Int to Double, result is 10.0, not 10
|
|
val b: Double = 10
|
|
|
|
// Boolean values
|
|
true
|
|
false
|
|
|
|
// Boolean operations
|
|
!true // false
|
|
!false // true
|
|
true == false // false
|
|
10 > 5 // true
|
|
|
|
// Math is as per usual
|
|
1 + 1 // 2
|
|
2 - 1 // 1
|
|
5 * 3 // 15
|
|
6 / 2 // 3
|
|
6 / 4 // 1
|
|
6.0 / 4 // 1.5
|
|
|
|
|
|
// Evaluating an expression in the REPL gives you the type and value of the result
|
|
|
|
1 + 7
|
|
|
|
/* The above line results in:
|
|
|
|
scala> 1 + 7
|
|
res29: Int = 8
|
|
|
|
This means the result of evaluating 1 + 7 is an object of type Int with a
|
|
value of 8
|
|
|
|
Note that "res29" is a sequentially generated variable name to store the
|
|
results of the expressions you typed, your output may differ.
|
|
*/
|
|
|
|
"Scala strings are surrounded by double quotes"
|
|
'a' // A Scala Char
|
|
// 'Single quote strings don't exist' <= This causes an error
|
|
|
|
// Strings have the usual Java methods defined on them
|
|
"hello world".length
|
|
"hello world".substring(2, 6)
|
|
"hello world".replace("C", "3")
|
|
|
|
// They also have some extra Scala methods. See also: scala.collection.immutable.StringOps
|
|
"hello world".take(5)
|
|
"hello world".drop(5)
|
|
|
|
// String interpolation: notice the prefix "s"
|
|
val n = 45
|
|
s"We have $n apples" // => "We have 45 apples"
|
|
|
|
// Expressions inside interpolated strings are also possible
|
|
val a = Array(11, 9, 6)
|
|
s"My second daughter is ${a(0) - a(2)} years old." // => "My second daughter is 5 years old."
|
|
s"We have double the amount of ${n / 2.0} in apples." // => "We have double the amount of 22.5 in apples."
|
|
s"Power of 2: ${math.pow(2, 2)}" // => "Power of 2: 4"
|
|
|
|
// Formatting with interpolated strings with the prefix "f"
|
|
f"Power of 5: ${math.pow(5, 2)}%1.0f" // "Power of 5: 25"
|
|
f"Square root of 122: ${math.sqrt(122)}%1.4f" // "Square root of 122: 11.0454"
|
|
|
|
// Raw strings, ignoring special characters.
|
|
raw"New line feed: \n. Carriage return: \r." // => "New line feed: \n. Carriage return: \r."
|
|
|
|
// Some characters need to be "escaped", e.g. a double quote inside a string:
|
|
"They stood outside the \"Rose and Crown\"" // => "They stood outside the "Rose and Crown""
|
|
|
|
// Triple double-quotes let strings span multiple rows and contain quotes
|
|
val html = """<form id="daform">
|
|
<p>Press belo', Joe</p>
|
|
<input type="submit">
|
|
</form>"""
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 2. Functions
|
|
/////////////////////////////////////////////////
|
|
|
|
// Functions are defined like so:
|
|
//
|
|
// def functionName(args...): ReturnType = { body... }
|
|
//
|
|
// If you come from more traditional languages, notice the omission of the
|
|
// return keyword. In Scala, the last expression in the function block is the
|
|
// return value.
|
|
def sumOfSquares(x: Int, y: Int): Int = {
|
|
val x2 = x * x
|
|
val y2 = y * y
|
|
x2 + y2
|
|
}
|
|
|
|
// The { } can be omitted if the function body is a single expression:
|
|
def sumOfSquaresShort(x: Int, y: Int): Int = x * x + y * y
|
|
|
|
// Syntax for calling functions is familiar:
|
|
sumOfSquares(3, 4) // => 25
|
|
|
|
// In most cases (with recursive functions the most notable exception), function
|
|
// return type can be omitted, and the same type inference we saw with variables
|
|
// will work with function return values:
|
|
def sq(x: Int) = x * x // Compiler can guess return type is Int
|
|
|
|
// Functions can have default parameters:
|
|
def addWithDefault(x: Int, y: Int = 5) = x + y
|
|
addWithDefault(1, 2) // => 3
|
|
addWithDefault(1) // => 6
|
|
|
|
|
|
// Anonymous functions look like this:
|
|
(x:Int) => x * x
|
|
|
|
// Unlike defs, even the input type of anonymous functions can be omitted if the
|
|
// context makes it clear. Notice the type "Int => Int" which means a function
|
|
// that takes Int and returns Int.
|
|
val sq: Int => Int = x => x * x
|
|
|
|
// Anonymous functions can be called as usual:
|
|
sq(10) // => 100
|
|
|
|
// If each argument in your anonymous function is
|
|
// used only once, Scala gives you an even shorter way to define them. These
|
|
// anonymous functions turn out to be extremely common, as will be obvious in
|
|
// the data structure section.
|
|
val addOne: Int => Int = _ + 1
|
|
val weirdSum: (Int, Int) => Int = (_ * 2 + _ * 3)
|
|
|
|
addOne(5) // => 6
|
|
weirdSum(2, 4) // => 16
|
|
|
|
|
|
// The return keyword exists in Scala, but it only returns from the inner-most
|
|
// def that surrounds it.
|
|
// WARNING: Using return in Scala is error-prone and should be avoided.
|
|
// It has no effect on anonymous functions. For example:
|
|
def foo(x: Int): Int = {
|
|
val anonFunc: Int => Int = { z =>
|
|
if (z > 5)
|
|
return z // This line makes z the return value of foo!
|
|
else
|
|
z + 2 // This line is the return value of anonFunc
|
|
}
|
|
anonFunc(x) // This line is the return value of foo
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 3. Flow Control
|
|
/////////////////////////////////////////////////
|
|
|
|
1 to 5
|
|
val r = 1 to 5
|
|
r.foreach( println )
|
|
|
|
r foreach println
|
|
// NB: Scala is quite lenient when it comes to dots and brackets - study the
|
|
// rules separately. This helps write DSLs and APIs that read like English
|
|
|
|
(5 to 1 by -1) foreach ( println )
|
|
|
|
// A while loops
|
|
var i = 0
|
|
while (i < 10) { println("i " + i); i+=1 }
|
|
|
|
while (i < 10) { println("i " + i); i+=1 } // Yes, again. What happened? Why?
|
|
|
|
i // Show the value of i. Note that while is a loop in the classical sense -
|
|
// it executes sequentially while changing the loop variable. while is very
|
|
// fast, faster that Java loops, but using the combinators and
|
|
// comprehensions above is easier to understand and parallelize
|
|
|
|
// A do while loop
|
|
do {
|
|
println("x is still less than 10");
|
|
x += 1
|
|
} while (x < 10)
|
|
|
|
// Tail recursion is an idiomatic way of doing recurring things in Scala.
|
|
// Recursive functions need an explicit return type, the compiler can't infer it.
|
|
// Here it's Unit.
|
|
def showNumbersInRange(a:Int, b:Int):Unit = {
|
|
print(a)
|
|
if (a < b)
|
|
showNumbersInRange(a + 1, b)
|
|
}
|
|
showNumbersInRange(1,14)
|
|
|
|
|
|
// Conditionals
|
|
|
|
val x = 10
|
|
|
|
if (x == 1) println("yeah")
|
|
if (x == 10) println("yeah")
|
|
if (x == 11) println("yeah")
|
|
if (x == 11) println ("yeah") else println("nay")
|
|
|
|
println(if (x == 10) "yeah" else "nope")
|
|
val text = if (x == 10) "yeah" else "nope"
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 4. Data Structures
|
|
/////////////////////////////////////////////////
|
|
|
|
val a = Array(1, 2, 3, 5, 8, 13)
|
|
a(0)
|
|
a(3)
|
|
a(21) // Throws an exception
|
|
|
|
val m = Map("fork" -> "tenedor", "spoon" -> "cuchara", "knife" -> "cuchillo")
|
|
m("fork")
|
|
m("spoon")
|
|
m("bottle") // Throws an exception
|
|
|
|
val safeM = m.withDefaultValue("no lo se")
|
|
safeM("bottle")
|
|
|
|
val s = Set(1, 3, 7)
|
|
s(0)
|
|
s(1)
|
|
|
|
/* Look up the documentation of map here -
|
|
* http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Map
|
|
* and make sure you can read it
|
|
*/
|
|
|
|
|
|
// Tuples
|
|
|
|
(1, 2)
|
|
|
|
(4, 3, 2)
|
|
|
|
(1, 2, "three")
|
|
|
|
(a, 2, "three")
|
|
|
|
// Why have this?
|
|
val divideInts = (x:Int, y:Int) => (x / y, x % y)
|
|
|
|
divideInts(10,3) // The function divideInts gives you the result and the remainder
|
|
|
|
// To access the elements of a tuple, use _._n where n is the 1-based index of
|
|
// the element
|
|
val d = divideInts(10,3)
|
|
|
|
d._1
|
|
|
|
d._2
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 5. Object Oriented Programming
|
|
/////////////////////////////////////////////////
|
|
|
|
/*
|
|
Aside: Everything we've done so far in this tutorial has been simple
|
|
expressions (values, functions, etc). These expressions are fine to type into
|
|
the command-line interpreter for quick tests, but they cannot exist by
|
|
themselves in a Scala file. For example, you cannot have just "val x = 5" in
|
|
a Scala file. Instead, the only top-level constructs allowed in Scala are:
|
|
|
|
- objects
|
|
- classes
|
|
- case classes
|
|
- traits
|
|
|
|
And now we will explain what these are.
|
|
*/
|
|
|
|
// classes are similar to classes in other languages. Constructor arguments are
|
|
// declared after the class name, and initialization is done in the class body.
|
|
class Dog(br: String) {
|
|
// Constructor code here
|
|
var breed: String = br
|
|
|
|
// Define a method called bark, returning a String
|
|
def bark = "Woof, woof!"
|
|
|
|
// Values and methods are assumed public. "protected" and "private" keywords
|
|
// are also available.
|
|
private def sleep(hours: Int) =
|
|
println(s"I'm sleeping for $hours hours")
|
|
|
|
// Abstract methods are simply methods with no body. If we uncomment the next
|
|
// line, class Dog would need to be declared abstract
|
|
// abstract class Dog(...) { ... }
|
|
// def chaseAfter(what: String): String
|
|
}
|
|
|
|
val mydog = new Dog("greyhound")
|
|
println(mydog.breed) // => "greyhound"
|
|
println(mydog.bark) // => "Woof, woof!"
|
|
|
|
|
|
// The "object" keyword creates a type AND a singleton instance of it. It is
|
|
// common for Scala classes to have a "companion object", where the per-instance
|
|
// behavior is captured in the classes themselves, but behavior related to all
|
|
// instance of that class go in objects. The difference is similar to class
|
|
// methods vs static methods in other languages. Note that objects and classes
|
|
// can have the same name.
|
|
object Dog {
|
|
def allKnownBreeds = List("pitbull", "shepherd", "retriever")
|
|
def createDog(breed: String) = new Dog(breed)
|
|
}
|
|
|
|
|
|
// Case classes are classes that have extra functionality built in. A common
|
|
// question for Scala beginners is when to use classes and when to use case
|
|
// classes. The line is quite fuzzy, but in general, classes tend to focus on
|
|
// encapsulation, polymorphism, and behavior. The values in these classes tend
|
|
// to be private, and only methods are exposed. The primary purpose of case
|
|
// classes is to hold immutable data. They often have few methods, and the
|
|
// methods rarely have side-effects.
|
|
case class Person(name: String, phoneNumber: String)
|
|
|
|
// Create a new instance. Note cases classes don't need "new"
|
|
val george = Person("George", "1234")
|
|
val kate = Person("Kate", "4567")
|
|
|
|
// With case classes, you get a few perks for free, like getters:
|
|
george.phoneNumber // => "1234"
|
|
|
|
// Per field equality (no need to override .equals)
|
|
Person("George", "1234") == Person("Kate", "1236") // => false
|
|
|
|
// Easy way to copy
|
|
// otherGeorge == Person("george", "9876")
|
|
val otherGeorge = george.copy(phoneNumber = "9876")
|
|
|
|
// And many others. Case classes also get pattern matching for free, see below.
|
|
|
|
|
|
// Traits coming soon!
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 6. Pattern Matching
|
|
/////////////////////////////////////////////////
|
|
|
|
// Pattern matching is a powerful and commonly used feature in Scala. Here's how
|
|
// you pattern match a case class. NB: Unlike other languages, Scala cases do
|
|
// not need breaks, fall-through does not happen.
|
|
|
|
def matchPerson(person: Person): String = person match {
|
|
// Then you specify the patterns:
|
|
case Person("George", number) => "We found George! His number is " + number
|
|
case Person("Kate", number) => "We found Kate! Her number is " + number
|
|
case Person(name, number) => "We matched someone : " + name + ", phone : " + number
|
|
}
|
|
|
|
val email = "(.*)@(.*)".r // Define a regex for the next example.
|
|
|
|
// Pattern matching might look familiar to the switch statements in the C family
|
|
// of languages, but this is much more powerful. In Scala, you can match much
|
|
// more:
|
|
def matchEverything(obj: Any): String = obj match {
|
|
// You can match values:
|
|
case "Hello world" => "Got the string Hello world"
|
|
|
|
// You can match by type:
|
|
case x: Double => "Got a Double: " + x
|
|
|
|
// You can specify conditions:
|
|
case x: Int if x > 10000 => "Got a pretty big number!"
|
|
|
|
// You can match case classes as before:
|
|
case Person(name, number) => s"Got contact info for $name!"
|
|
|
|
// You can match regular expressions:
|
|
case email(name, domain) => s"Got email address $name@$domain"
|
|
|
|
// You can match tuples:
|
|
case (a: Int, b: Double, c: String) => s"Got a tuple: $a, $b, $c"
|
|
|
|
// You can match data structures:
|
|
case List(1, b, c) => s"Got a list with three elements and starts with 1: 1, $b, $c"
|
|
|
|
// You can nest patterns:
|
|
case List(List((1, 2,"YAY"))) => "Got a list of list of tuple"
|
|
}
|
|
|
|
// In fact, you can pattern match any object with an "unapply" method. This
|
|
// feature is so powerful that Scala lets you define whole functions as
|
|
// patterns:
|
|
val patternFunc: Person => String = {
|
|
case Person("George", number) => s"George's number: $number"
|
|
case Person(name, number) => s"Random person's number: $number"
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 7. Functional Programming
|
|
/////////////////////////////////////////////////
|
|
|
|
// Scala allows methods and functions to return, or take as parameters, other
|
|
// functions or methods.
|
|
|
|
val add10: Int => Int = _ + 10 // A function taking an Int and returning an Int
|
|
List(1, 2, 3) map add10 // List(11, 12, 13) - add10 is applied to each element
|
|
|
|
// Anonymous functions can be used instead of named functions:
|
|
List(1, 2, 3) map (x => x + 10)
|
|
|
|
// And the underscore symbol, can be used if there is just one argument to the
|
|
// anonymous function. It gets bound as the variable
|
|
List(1, 2, 3) map (_ + 10)
|
|
|
|
// If the anonymous block AND the function you are applying both take one
|
|
// argument, you can even omit the underscore
|
|
List("Dom", "Bob", "Natalia") foreach println
|
|
|
|
|
|
// Combinators
|
|
|
|
s.map(sq)
|
|
|
|
val sSquared = s. map(sq)
|
|
|
|
sSquared.filter(_ < 10)
|
|
|
|
sSquared.reduce (_+_)
|
|
|
|
// The filter function takes a predicate (a function from A -> Boolean) and
|
|
// selects all elements which satisfy the predicate
|
|
List(1, 2, 3) filter (_ > 2) // List(3)
|
|
case class Person(name:String, age:Int)
|
|
List(
|
|
Person(name = "Dom", age = 23),
|
|
Person(name = "Bob", age = 30)
|
|
).filter(_.age > 25) // List(Person("Bob", 30))
|
|
|
|
|
|
// Scala a foreach method defined on certain collections that takes a type
|
|
// returning Unit (a void method)
|
|
val aListOfNumbers = List(1, 2, 3, 4, 10, 20, 100)
|
|
aListOfNumbers foreach (x => println(x))
|
|
aListOfNumbers foreach println
|
|
|
|
// For comprehensions
|
|
|
|
for { n <- s } yield sq(n)
|
|
|
|
val nSquared2 = for { n <- s } yield sq(n)
|
|
|
|
for { n <- nSquared2 if n < 10 } yield n
|
|
|
|
for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared
|
|
|
|
/* NB Those were not for loops. The semantics of a for loop is 'repeat', whereas
|
|
a for-comprehension defines a relationship between two sets of data. */
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 8. Implicits
|
|
/////////////////////////////////////////////////
|
|
|
|
/* WARNING WARNING: Implicits are a set of powerful features of Scala, and
|
|
* therefore it is easy to abuse them. Beginners to Scala should resist the
|
|
* temptation to use them until they understand not only how they work, but also
|
|
* best practices around them. We only include this section in the tutorial
|
|
* because they are so commonplace in Scala libraries that it is impossible to
|
|
* do anything meaningful without using a library that has implicits. This is
|
|
* meant for you to understand and work with implicts, not declare your own.
|
|
*/
|
|
|
|
// Any value (vals, functions, objects, etc) can be declared to be implicit by
|
|
// using the, you guessed it, "implicit" keyword. Note we are using the Dog
|
|
// class from section 5 in these examples.
|
|
implicit val myImplicitInt = 100
|
|
implicit def myImplicitFunction(breed: String) = new Dog("Golden " + breed)
|
|
|
|
// By itself, implicit keyword doesn't change the behavior of the value, so
|
|
// above values can be used as usual.
|
|
myImplicitInt + 2 // => 102
|
|
myImplicitFunction("Pitbull").breed // => "Golden Pitbull"
|
|
|
|
// The difference is that these values are now eligible to be used when another
|
|
// piece of code "needs" an implicit value. One such situation is implicit
|
|
// function arguments:
|
|
def sendGreetings(toWhom: String)(implicit howMany: Int) =
|
|
s"Hello $toWhom, $howMany blessings to you and yours!"
|
|
|
|
// If we supply a value for "howMany", the function behaves as usual
|
|
sendGreetings("John")(1000) // => "Hello John, 1000 blessings to you and yours!"
|
|
|
|
// But if we omit the implicit parameter, an implicit value of the same type is
|
|
// used, in this case, "myImplicitInt":
|
|
sendGreetings("Jane") // => "Hello Jane, 100 blessings to you and yours!"
|
|
|
|
// Implicit function parameters enable us to simulate type classes in other
|
|
// functional languages. It is so often used that it gets its own shorthand. The
|
|
// following two lines mean the same thing:
|
|
def foo[T](implicit c: C[T]) = ...
|
|
def foo[T : C] = ...
|
|
|
|
|
|
// Another situation in which the compiler looks for an implicit is if you have
|
|
// obj.method(...)
|
|
// but "obj" doesn't have "method" as a method. In this case, if there is an
|
|
// implicit conversion of type A => B, where A is the type of obj, and B has a
|
|
// method called "method", that conversion is applied. So having
|
|
// myImplicitFunction above in scope, we can say:
|
|
"Retriever".breed // => "Golden Retriever"
|
|
"Sheperd".bark // => "Woof, woof!"
|
|
|
|
// Here the String is first converted to Dog using our function above, and then
|
|
// the appropriate method is called. This is an extremely powerful feature, but
|
|
// again, it is not to be used lightly. In fact, when you defined the implicit
|
|
// function above, your compiler should have given you a warning, that you
|
|
// shouldn't do this unless you really know what you're doing.
|
|
|
|
|
|
/////////////////////////////////////////////////
|
|
// 9. Misc
|
|
/////////////////////////////////////////////////
|
|
|
|
// Importing things
|
|
import scala.collection.immutable.List
|
|
|
|
// Import all "sub packages"
|
|
import scala.collection.immutable._
|
|
|
|
// Import multiple classes in one statement
|
|
import scala.collection.immutable.{List, Map}
|
|
|
|
// Rename an import using '=>'
|
|
import scala.collection.immutable.{ List => ImmutableList }
|
|
|
|
// Import all classes, except some. The following excludes Map and Set:
|
|
import scala.collection.immutable.{Map => _, Set => _, _}
|
|
|
|
// Your programs entry point is defined in an scala file using an object, with a
|
|
// single method, main:
|
|
object Application {
|
|
def main(args: Array[String]): Unit = {
|
|
// stuff goes here.
|
|
}
|
|
}
|
|
|
|
// Files can contain multiple classes and objects. Compile with scalac
|
|
|
|
|
|
|
|
|
|
// Input and output
|
|
|
|
// To read a file line by line
|
|
import scala.io.Source
|
|
for(line <- Source.fromFile("myfile.txt").getLines())
|
|
println(line)
|
|
|
|
// To write a file use Java's PrintWriter
|
|
val writer = new PrintWriter("myfile.txt")
|
|
writer.write("Writing line for line" + util.Properties.lineSeparator)
|
|
writer.write("Another line here" + util.Properties.lineSeparator)
|
|
writer.close()
|
|
|
|
```
|
|
|
|
## Further resources
|
|
|
|
[Scala for the impatient](http://horstmann.com/scala/)
|
|
|
|
[Twitter Scala school](http://twitter.github.io/scala_school/)
|
|
|
|
[The scala documentation](http://docs.scala-lang.org/)
|
|
|
|
[Try Scala in your browser](http://scalatutorials.com/tour/)
|
|
|
|
Join the [Scala user group](https://groups.google.com/forum/#!forum/scala-user)
|
|
|