1
1
mirror of https://github.com/anoma/juvix.git synced 2025-01-05 22:46:08 +03:00

Change syntax for ind. data types and forbid the empty data type (#1684)

Closes #1644 #1635
This commit is contained in:
Jonathan Cubides 2023-01-03 13:49:04 +01:00 committed by GitHub
parent 8f6eb3ebc7
commit 3fbc9c7c55
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
180 changed files with 470 additions and 687 deletions

View File

@ -12,10 +12,9 @@ foreign ghc {
-- Booleans
--------------------------------------------------------------------------------
inductive Bool {
true : Bool;
false : Bool;
};
type Bool :=
true : Bool
| false : Bool;
infixr 2 ||;
|| : Bool → Bool → Bool;
@ -139,10 +138,9 @@ infix 4 ==String;
--------------------------------------------------------------------------------
infixr 5 ∷;
inductive List (A : Type) {
nil : List A;
∷ : A → List A → List A;
};
type List (A : Type) :=
nil : List A
| ∷ : A → List A → List A;
elem : {A : Type} → (A → A → Bool) → A → List A → Bool;
elem _ _ nil := false;
@ -158,18 +156,16 @@ foldl f z (h ∷ hs) := foldl f (f z h) hs;
infixr 4 ,;
infixr 2 ×;
inductive × (A : Type) (B : Type) {
type × (A : Type) (B : Type) :=
, : A → B → A × B;
};
--------------------------------------------------------------------------------
-- Maybe
--------------------------------------------------------------------------------
inductive Maybe (A : Type) {
nothing : Maybe A;
type Maybe (A : Type) :=
nothing : Maybe A |
just : A → Maybe A;
};
from-int : Int → Maybe Int;
from-int i := if (i < 0) nothing (just i);

View File

@ -7,10 +7,9 @@ Juvix has support for the built-in natural type and a few functions that are com
#+begin_example
builtin nat
inductive Nat {
zero : Nat;
type Nat :=
zero : Nat |
suc : Nat → Nat;
};
#+end_example
2. Builtin function definitions.

View File

@ -19,10 +19,9 @@ foreign c {
\}
};
inductive Bool {
true : Bool;
type Bool :=
true : Bool |
false : Bool;
};
infix 4 <';
axiom <' : Int -> Int -> Bool;

View File

@ -1,15 +1,16 @@
* Inductive data types
The =inductive= keyword is reserved for declaring inductive data types. An
inductive type declaration requires a unique name for its type and its
constructors, functions for building its terms. Constructors can be used as
normal identifiers and also in patterns. As shown later, one can also provide
type parameters to widen the family of inductive types one can define in Juvix.
inductive type declaration requires a unique name for its type and a non-empty
list of constructor declarations, functions for building the terms of the
inductive data type. Constructors can be used as normal identifiers and also in
patterns. As shown later, one can also provide type parameters to widen the
family of inductive types one can define in Juvix.
The simplest inductive type is the =Empty= type with no constructors.
The simplest inductive type is the =Unit= type with one constructor called =unit=.
#+begin_example
inductive Empty {};
type Unit := unit : Unit;
#+end_example
In the following example, we declare the inductive type =Nat=, the unary
@ -18,10 +19,9 @@ namely =zero= and =suc=. A term of the type =Nat= is the number one, represented
by =suc zero= or the number two represented by =suc (suc zero)=, etc.
#+begin_example
inductive Nat {
zero : Nat;
suc : Nat -> Nat;
};
type Nat :=
zero : Nat
| suc : Nat -> Nat;
#+end_example
The way to use inductive types is by declaring functions by pattern matching.
@ -43,10 +43,9 @@ the following type taken from the Juvix standard library:
#+begin_example
infixr 5 ∷;
inductive List (A : Type) {
nil : List A;
∷ : A -> List A -> List A;
};
type List (A : Type) :=
nil : List A
| ∷ : A -> List A -> List A;
elem : {A : Type} -> (A -> A -> Bool) -> A -> List A -> Bool;
elem _ _ nil := false;

View File

@ -10,10 +10,9 @@ of definitions:
1. Builtin inductive definitions. For example:
#+begin_example
builtin nat
inductive Nat {
zero : Nat;
type Nat :=
zero : Nat |
suc : Nat → Nat;
};
#+end_example
We will call this the canonical definition of natural numbers.
@ -41,10 +40,9 @@ what are the terms that refer to them. For instance, imagine that we find this
definitions in a juvix module:
#+begin_src text
builtin nat
inductive MyNat {
z : MyNat;
type MyNat :=
z : MyNat |
s : MyNat → MyNat;
};
#+end_src
We need to take care of the following:
1. Check that the definition =MyInt= is up to renaming equal to the canonical

View File

@ -31,10 +31,9 @@
* More examples
** Mutual recursion
#+begin_src juvix
inductive List (A : Type) {
nil : List A;
type List (A : Type) :=
nil : List A |
cons : A → List A → List A;
};
even : (A : Type) → List A → Bool;
even A nil := true ;

View File

@ -2,27 +2,28 @@
We follow a syntactic description of strictly positive inductive data types.
An inductive type is said to be _strictly positive_ if it does not occur or occurs
strictly positively in the types of the arguments of its constructors. A name
qualified as strictly positive for an inductive type if it never occurs at a negative
position in the types of the arguments of its constructors. We refer to a negative
position as those occurrences on the left of an arrow in a type constructor argument.
An inductive type is said to be _strictly positive_ if it does not occur or
occurs strictly positively in the types of the arguments of its constructors. A
name qualified as strictly positive for an inductive type if it never occurs at
a negative position in the types of the arguments of its constructors. We refer
to a negative position as those occurrences on the left of an arrow in a type
constructor argument.
In the example below, the type =X= occurs strictly positive in =c0= and negatively at
the constructor =c1=. Therefore, =X= is not strictly positive.
In the example below, the type =X= occurs strictly positive in =c0= and
negatively at the constructor =c1=. Therefore, =X= is not strictly positive.
#+begin_src minijuvix
axiom B : Type;
inductive X {
c0 : (B -> X) -> X;
c1 : (X -> X) -> X;
};
type X :=
c0 : (B -> X) -> X
| c1 : (X -> X) -> X;
#+end_src
We could also refer to positive parameters as such parameters occurring in no negative positions.
For example, the type =B= in the =c0= constructor above is on the left of the arrow =B->X=.
Then, =B= is at a negative position. Negative parameters need to be considered when checking strictly
positive data types as they may allow to define non-strictly positive data types.
We could also refer to positive parameters as such parameters occurring in no
negative positions. For example, the type =B= in the =c0= constructor above is
on the left of the arrow =B->X=. Then, =B= is at a negative position. Negative
parameters need to be considered when checking strictly positive data types as
they may allow to define non-strictly positive data types.
In the example below, the type =T0= is strictly positive. However, the type =T1= is not.
Only after unfolding the type application =T0 (T1 A)= in the data constructor =c1=, we can
@ -30,13 +31,9 @@ find out that =T1= occurs at a negative position because of =T0=. More precisely
the type parameter =A= of =T0= is negative.
#+begin_src minijuvix
inductive T0 (A : Type) {
c0 : (A -> T0 A) -> T0 A;
};
type T0 (A : Type) := c0 : (A -> T0 A) -> T0 A;
inductive T1 {
c1 : T0 T1 -> T1;
};
type T1 := c1 : T0 T1 -> T1;
#+end_src
@ -50,37 +47,25 @@ when typechecking a =Juvix= File.
$ cat tests/negative/MicroJuvix/NoStrictlyPositiveDataTypes/E5.mjuvix
module E5;
positive
inductive T0 (A : Type){
type T0 (A : Type) :=
c0 : (T0 A -> A) -> T0 A;
};
end;
#+end_example
** Examples of non-strictly data types
- =NSPos= is at a negative position in =c=.
#+begin_src minijuvix
inductive Empty {};
inductive NSPos {
c : ((NSPos -> Empty) -> NSPos) -> NSPos;
};
#+end_src
- =Bad= is not strictly positive beceause of the negative parameter =A= of =Tree=.
#+begin_src minijuvix
inductive Tree (A : Type) {
leaf : Tree A;
node : (A -> Tree A) -> Tree A;
};
type Tree (A : Type) :=
leaf : Tree A
| node : (A -> Tree A) -> Tree A;
inductive Bad {
type Bad :=
bad : Tree Bad -> Bad;
};
#+end_src
- =A= is a negative parameter.
#+begin_src minijuvix
inductive B (A : Type) {
type B (A : Type) :=
b : (A -> B (B A -> A)) -> B A;
};
#+end_src

View File

@ -43,11 +43,10 @@ showList : List Nat → String;
showList xs := "[" ++str intercalate "," (map natToStr xs) ++str "]";
--- A Peg represents a peg in the towers of Hanoi game
inductive Peg {
left : Peg;
middle : Peg;
right : Peg;
};
type Peg :=
left : Peg
| middle : Peg
| right : Peg;
showPeg : Peg → String;
showPeg left := "left";
@ -56,9 +55,7 @@ showPeg right := "right";
--- A Move represents a move between pegs
inductive Move {
move : Peg → Peg → Move;
};
type Move := move : Peg → Peg → Move;
showMove : Move → String;
showMove (move from to) := showPeg from ++str " -> " ++str showPeg to;

View File

@ -6,9 +6,8 @@ open import Logic.Symbol public;
open import Logic.Extra;
--- A 3x3 grid of ;Square;s
inductive Board {
type Board :=
board : List (List Square) → Board;
};
--- Returns the list of numbers corresponding to the empty ;Square;s
possibleMoves : List Square → List Nat;

View File

@ -4,18 +4,16 @@ open import Stdlib.Prelude;
open import Logic.Extra;
open import Logic.Board;
inductive Error {
type Error :=
--- no error occurred
noError : Error;
noError : Error |
--- a non-fatal error occurred
continue : String → Error;
continue : String → Error |
--- a fatal occurred
terminate : String → Error;
};
terminate : String → Error;
inductive GameState {
type GameState :=
state : Board → Symbol → Error → GameState;
};
--- Textual representation of a ;GameState;
showGameState : GameState → String;

View File

@ -6,12 +6,12 @@ open import Stdlib.Data.Nat.Ord;
open import Logic.Extra;
--- A square is each of the holes in a board
inductive Square {
type Square :=
--- An empty square has a ;Nat; that uniquely identifies it
empty : Nat → Square;
--- An occupied square has a ;Symbol; in it
occupied : Symbol → Square;
};
empty : Nat → Square
-- TODO: Check the line below using Judoc
-- - An occupied square has a ;Symbol; in it
| occupied : Symbol → Square;
--- Equality for ;Square;s
==Square : Square → Square → Bool;

View File

@ -4,12 +4,11 @@ module Logic.Symbol;
open import Stdlib.Prelude;
--- A symbol represents a token that can be placed in a square
inductive Symbol {
type Symbol :=
--- The circle token
O : Symbol;
O : Symbol |
--- The cross token
X : Symbol;
};
--- Equality for ;Symbol;s
==Symbol : Symbol → Symbol → Bool;

View File

@ -93,11 +93,10 @@ lightBackgroundColor := "#c7737a";
-- Rendering
inductive Align {
left : Align;
right : Align;
center : Align;
};
type Align :=
left : Align
| right : Align
| center : Align;
alignNum : Align → Nat;
alignNum left := zero;

@ -1 +1 @@
Subproject commit a2790ca49ceeb569559224abe1587305ea1861fa
Subproject commit bdcf1ef0889a08de1ec334a598efbbf622607884

View File

@ -279,7 +279,7 @@ goInductive ty@InductiveDef {..} = do
_inductiveBuiltin = _inductiveBuiltin,
_inductiveName = goSymbol _inductiveName,
_inductiveType = fromMaybe (Abstract.ExpressionUniverse (smallUniverse loc)) _inductiveType',
_inductiveConstructors = _inductiveConstructors',
_inductiveConstructors = toList _inductiveConstructors',
_inductiveExamples = _inductiveExamples',
_inductivePositive = ty ^. inductivePositive
}

View File

@ -411,9 +411,9 @@ goInductive def = do
inductiveHeader =
runReader defaultOptions (ppInductiveSignature def) >>= ppCodeHtml
goConstructors :: forall r. Members '[Reader HtmlOptions, Reader NormalizedTable] r => [InductiveConstructorDef 'Scoped] -> Sem r Html
goConstructors :: forall r. Members '[Reader HtmlOptions, Reader NormalizedTable] r => NonEmpty (InductiveConstructorDef 'Scoped) -> Sem r Html
goConstructors cc = do
tbl' <- table . tbody <$> mconcatMapM goConstructor cc
tbl' <- table . tbody <$> mconcatMapM goConstructor (toList cc)
return $
Html.div ! Attr.class_ "subs constructors" $
(p ! Attr.class_ "caption" $ "Constructors")

View File

@ -36,6 +36,7 @@ import Juvix.Data.Keyword.All
kwMapsTo,
kwModule,
kwOpen,
kwPipe,
kwPositive,
kwPostfix,
kwPublic,
@ -76,6 +77,7 @@ allKeywords =
kwLet,
kwModule,
kwOpen,
kwPipe,
kwPostfix,
kwPublic,
kwRightArrow,

View File

@ -249,7 +249,7 @@ data InductiveDef (s :: Stage) = InductiveDef
_inductiveName :: InductiveName s,
_inductiveParameters :: [InductiveParameter s],
_inductiveType :: Maybe (ExpressionType s),
_inductiveConstructors :: [InductiveConstructorDef s],
_inductiveConstructors :: NonEmpty (InductiveConstructorDef s),
_inductivePositive :: Bool
}

View File

@ -108,13 +108,16 @@ groupStatements = reverse . map reverse . uncurry cons . foldl' aux ([], [])
symbolParsed sym = case sing :: SStage s of
SParsed -> sym
SScoped -> sym ^. S.nameConcrete
syms :: InductiveDef s -> [Symbol]
syms InductiveDef {..} = case sing :: SStage s of
SParsed -> _inductiveName : map (^. constructorName) _inductiveConstructors
SScoped ->
_inductiveName
^. S.nameConcrete
: map (^. constructorName . S.nameConcrete) _inductiveConstructors
syms InductiveDef {..} =
let constructors = toList _inductiveConstructors
in case sing :: SStage s of
SParsed -> _inductiveName : map (^. constructorName) constructors
SScoped ->
_inductiveName
^. S.nameConcrete
: map (^. constructorName . S.nameConcrete) constructors
instance SingI s => PrettyCode [Statement s] where
ppCode ss = vsep2 <$> mapM (fmap vsep . mapM (fmap endSemicolon . ppCode)) (groupStatements ss)
@ -288,8 +291,19 @@ instance SingI s => PrettyCode (InductiveDef s) where
ppCode d@InductiveDef {..} = do
doc' <- mapM ppCode _inductiveDoc
sig' <- ppInductiveSignature d
inductiveConstructors' <- ppBlock _inductiveConstructors
return $ doc' ?<> sig' <+> inductiveConstructors'
inductiveConstructors' <- ppConstructorBlock _inductiveConstructors
return $
doc' ?<> sig'
<+> kwAssign
<> line
<> (indent' . align) inductiveConstructors'
where
ppConstructorBlock ::
NonEmpty (InductiveConstructorDef s) -> Sem r (Doc Ann)
ppConstructorBlock cs =
do
concatWith (\x y -> x <> softline <> kwPipe <+> y)
<$> mapM ppCode (toList cs)
dotted :: Foldable f => f (Doc Ann) -> Doc Ann
dotted = concatWith (surround kwDot)

View File

@ -496,10 +496,16 @@ inductiveDef _inductiveBuiltin = do
_inductivePositive <- isJust <$> optional (kw kwPositive)
kw kwInductive
_inductiveDoc <- getJudoc
_inductiveName <- symbol
_inductiveParameters <- P.many inductiveParam
_inductiveType <- optional (kw kwColon >> parseExpressionAtoms)
_inductiveConstructors <- braces $ P.sepEndBy constructorDef (kw kwSemicolon)
_inductiveName <- symbol P.<?> "<type name>"
_inductiveParameters <-
P.many inductiveParam
P.<?> "<type parameter e.g. '(A : Type)'>"
_inductiveType <-
optional (kw kwColon >> parseExpressionAtoms)
P.<?> "<type annotation e.g. ': Type'>"
kw kwAssign P.<?> "<assignment symbol ':='>"
_inductiveConstructors <-
P.sepBy1 constructorDef (kw kwPipe) P.<?> "<constructor definition>"
return InductiveDef {..}
inductiveParam :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r (InductiveParameter 'Parsed)
@ -512,9 +518,10 @@ inductiveParam = parens $ do
constructorDef :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r (InductiveConstructorDef 'Parsed)
constructorDef = do
_constructorDoc <- optional stashJudoc >> getJudoc
_constructorName <- symbol
kw kwColon
_constructorType <- parseExpressionAtoms
_constructorName <- symbol P.<?> "<constructor name>"
_constructorType <-
kw kwColon >> parseExpressionAtoms
P.<?> "<constructor type signature (:)>"
return InductiveConstructorDef {..}
wildcard :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r Wildcard

View File

@ -94,6 +94,9 @@ kwRightArrow = unicodeKw Str.toAscii Str.toUnicode
kwSemicolon :: Keyword
kwSemicolon = asciiKw Str.semicolon
kwPipe :: Keyword
kwPipe = asciiKw Str.pipe
kwType :: Keyword
kwType = asciiKw Str.type_

View File

@ -33,7 +33,7 @@ in_ :: IsString s => s
in_ = "in"
inductive :: IsString s => s
inductive = "inductive"
inductive = "type"
function :: IsString s => s
function = "function"

View File

@ -65,12 +65,6 @@ tests =
$(mkRelFile "TerminatingG.juvix")
$ \case
ErrNoLexOrder {} -> Nothing,
NegTest
"f x := f x is not terminating"
$(mkRelDir ".")
$(mkRelFile "ToEmpty.juvix")
$ \case
ErrNoLexOrder {} -> Nothing,
NegTest
"Tree"
$(mkRelDir ".")

View File

@ -71,10 +71,6 @@ tests =
testsWithKeyword :: [PosTest]
testsWithKeyword =
[ PosTest
"terminating added to fx:=fx"
$(mkRelDir ".")
$(mkRelFile "ToEmpty.juvix"),
PosTest
"terminating for all functions in the mutual block"
$(mkRelDir ".")
$(mkRelFile "Mutual.juvix"),

View File

@ -1,6 +1,6 @@
-- invalid memory access
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- no matching case branch
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- case stack height mismatch
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- case type mismatch
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- case
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- trees
inductive tree {
type tree {
node1 : tree -> tree;
node2 : tree -> tree -> tree;
node3 : tree -> tree -> tree -> tree;

View File

@ -1,6 +1,6 @@
-- lists
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- structural equality
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- temporary stack with branching
inductive tree {
type tree {
leaf : tree;
node : tree -> tree -> tree;
}

View File

@ -1,6 +1,6 @@
-- Church numerals
inductive Pair {
type Pair {
pair : * -> * -> Pair;
}

View File

@ -1,6 +1,6 @@
-- Nested lists
inductive list {
type list {
nil : list;
cons : * -> list -> list;
}

View File

@ -1,6 +1,6 @@
-- streams without memoization
inductive stream {
type stream {
cons : integer -> (unit -> stream) -> stream;
}

View File

@ -1,6 +1,6 @@
-- case
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- trees
inductive tree : Type {
type tree : Type {
node1 : tree -> tree;
node2 : tree -> tree -> tree;
node3 : tree -> tree -> tree -> tree;

View File

@ -1,6 +1,6 @@
-- lists
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- structural equality
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- nested case, let & if
inductive tree {
type tree {
leaf : tree;
node : tree -> tree -> tree;
};

View File

@ -1,6 +1,6 @@
-- functional queues
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};
@ -15,7 +15,7 @@ def rev' := \l \acc case l of {
def rev := \l rev' l nil;
inductive Queue {
type Queue {
queue : list -> list -> Queue;
};

View File

@ -1,6 +1,6 @@
-- Church numerals
inductive Pair {
type Pair {
pair : any -> any -> Pair;
};

View File

@ -1,10 +1,10 @@
-- streams without memoization
inductive Unit {
type Unit {
unit : Unit;
};
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- nested lists
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,11 +1,11 @@
-- merge sort
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};
inductive product {
type product {
pair : any -> any -> product;
};

View File

@ -1,6 +1,6 @@
-- global variables
inductive Unit {
type Unit {
unit : Unit;
};

View File

@ -1,6 +1,6 @@
-- eta-expansion of builtins and constructors
inductive stream {
type stream {
cons : any -> any -> stream;
};

View File

@ -1,6 +1,6 @@
-- match
inductive list {
type list {
cons : any -> list -> list;
nil : list;
};
@ -14,7 +14,7 @@ def sum2 := \x {
}
};
inductive tree {
type tree {
leaf : tree;
node : tree -> tree -> tree;
};

View File

@ -1,6 +1,6 @@
-- type annotations
inductive list : Π A : Type, Type {
type list : Π A : Type, Type {
cons : Π A : Type, A → list A → list A;
nil : Π A : Type, list A;
};

View File

@ -1,6 +1,6 @@
-- type application and abstraction
inductive list : Π A : Type, Type {
type list : Π A : Type, Type {
cons : Π A : Type, A → list A → list A;
nil : Π A : Type, list A;
};

View File

@ -1,6 +1,6 @@
-- applications with lets and cases in function position
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,8 +1,7 @@
module FunctionReturnConstructor;
inductive Foo {
type Foo :=
foo : Foo;
};
main : Foo;
main := foo;

View File

@ -1,8 +1,7 @@
module FunctionType;
inductive A {
type A :=
a : A;
};
main : Type;
main := (A : Type) -> (B : Type) -> A -> B;

View File

@ -1,8 +1,7 @@
module Inductive;
inductive A (B : Type) {
type A (B : Type) :=
a : A B;
};
main : Type -> Type;
main := A;

View File

@ -2,10 +2,9 @@ module MatchConstructor;
open import Stdlib.Prelude;
inductive Foo {
foo1 : Nat → Foo;
type Foo :=
foo1 : Nat → Foo |
foo2 : Foo;
};
toNat : Foo → Nat;
toNat (foo1 n) := n;

View File

@ -1,6 +1,6 @@
-- fold a list of N integers
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- map and fold a list of N integers K times
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -1,6 +1,6 @@
-- successively map K functions to a list of N integers
inductive list {
type list {
nil : list;
cons : * -> list -> list;
};

View File

@ -1,11 +1,11 @@
-- optionally sum N integers from a binary tree K times
inductive tree {
type tree {
node : int -> tree -> tree -> tree;
leaf : tree;
};
inductive maybe {
type maybe {
just : any -> maybe;
nothing : maybe;
};

View File

@ -6,10 +6,9 @@ open import Stdlib.Prelude;
open import Data.Int;
open import Data.Int.Ops;
inductive Tree {
leaf : Tree;
type Tree :=
leaf : Tree |
node : Int -> Tree -> Tree -> Tree;
};
mknode : Int -> Tree -> Tree;
mknode n t := node n t t;

View File

@ -1,11 +1,11 @@
-- merge sort
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};
inductive product {
type product {
pair : any -> any -> product;
};

View File

@ -1,6 +1,6 @@
-- Compute the Nth prime
inductive list {
type list {
nil : list;
cons : any -> list -> list;
};

View File

@ -2,10 +2,9 @@ module Foo.Data.Bool;
import Stdlib.Data.Bool;
inductive Bool {
true : Bool;
type Bool :=
true : Bool |
false : Bool;
};
not : Bool → Bool;
not true := false;

View File

@ -1,9 +1,8 @@
module M;
inductive Nat {
O : Nat;
type Nat :=
O : Nat |
S : Nat -> Nat;
};
fun : Nat -> Nat;
fun (S {S {x}}) := x;

View File

@ -1,13 +1,11 @@
module M;
inductive Bool {
false : Bool;
true : Bool;
};
type Bool :=
true : Bool
| false : Bool;
inductive Pair (A : Type) (B : Type) {
type Pair (A : Type) (B : Type) :=
mkPair : A → B → Pair A B;
};
f : _ → _;
f (mkPair false true) := true;

View File

@ -1,14 +1,12 @@
module AmbiguousConstructor;
module M;
inductive T1 {
type T1 :=
A : T1;
};
end;
module N;
inductive T2 {
type T2 :=
A : T2;
};
end;
open M;

View File

@ -2,9 +2,8 @@ module AmbiguousExport;
module N;
module O;
inductive T {
type T :=
A : T;
};
end;
end;

View File

@ -3,9 +3,7 @@ module AmbiguousSymbol;
axiom A : Type;
module O;
inductive T {
A : T;
};
type T := A : T;
end;
open O;

View File

@ -1,8 +1,7 @@
module Clause;
inductive Pair (a : Type) (b : Type) {
mkPair : a → b → Pair a b
};
type Pair (a : Type) (b : Type) :=
mkPair : a → b → Pair a b;
fst : (a : Type) → (b : Type) → Pair a b → a ;
fst _ _ (mkPair _ _ x x) := x;

View File

@ -1,8 +1,6 @@
module Lambda;
inductive Pair (a : Type) (b : Type) {
mkPair : a → b → Pair a b
};
type Pair (a : Type) (b : Type) := mkPair : a → b → Pair a b;
fst : (a : Type) → (b : Type) → Pair a b → a ;
fst := λ { _ _ (mkPair _ _ x x) := x };

View File

@ -2,10 +2,9 @@ module Sample.Definitions;
axiom A : Type;
inductive Nat {
zero : Nat;
type Nat :=
zero : Nat |
suc : Nat -> Nat;
};
f : A -> Nat;
f a := zero;

View File

@ -1,5 +1,5 @@
module DuplicateInductiveParameterName;
inductive T (A : Type) (B : Type) (A : Type) {};
type T (A : Type) (B : Type) (A : Type) := c : T A B A;
end;

View File

@ -2,9 +2,8 @@ module InfixErrorP;
infix 5 , ;
inductive Pair {
, : Type → Type → Pair
};
type Pair :=
, : Type → Type → Pair;
fst : Pair → Type;
fst (x , ) := x;

View File

@ -1,7 +1,6 @@
module ExpectedExplicitArgument;
inductive T (A : Type) {
type T (A : Type) :=
c : A → T A;
};
f : {A : Type} → A → T A;
f {A} a := c {A} {a};

View File

@ -1,7 +1,6 @@
module ExpectedExplicitPattern;
inductive T (A : Type) {
type T (A : Type) :=
c : A → T A;
};
f : {A : Type} → T A → A;
f {_} {c a} := a;

View File

@ -1,11 +1,9 @@
module ExpectedFunctionType;
inductive Pair (A : Type) {
type Pair (A : Type) :=
mkPair : A → A → Pair A;
};
inductive B {
type B :=
b : B;
};
f : Pair B → Pair B;
f (mkPair a b) := a b;

View File

@ -1,7 +1,6 @@
module FunctionApplied;
inductive T (A : Type) {
type T (A : Type) :=
c : A → T A;
};
f : {A : Type} → A → T A;
f {A} a := c {(A → A) A} a;

View File

@ -1,7 +1,6 @@
module FunctionPattern;
inductive T {
type T :=
A : T;
};
f : (T → T) → T;
f A := A;

View File

@ -1,7 +1,6 @@
module LhsTooManyPatterns;
inductive T {
type T :=
A : T;
};
f : T → T;
f A x := A;

View File

@ -1,11 +1,9 @@
module MultiWrongType;
inductive A {
type A :=
a : A;
};
inductive B {
type B :=
b : B;
};
f : A;
f := b;

View File

@ -1,11 +1,9 @@
module PatternConstructor;
inductive A {
type A :=
a : A;
};
inductive B {
type B :=
b : B;
};
f : A → B;
f b := b;

View File

@ -1,8 +1,7 @@
module E1;
axiom B : Type;
inductive X {
type X :=
c : (X -> B) -> X;
};
end;

View File

@ -1,14 +1,11 @@
module E10;
inductive T0 (A : Type) {
type T0 (A : Type) :=
t : (A -> T0 A) -> T0 A;
};
alias : Type -> Type;
alias := T0;
inductive T1 {
c : (alias T1 -> T1;
};
type T1 := c : alias T1 -> T1;
end;

View File

@ -1,14 +1,12 @@
module E11;
inductive T0 (A : Type) {
type T0 (A : Type) :=
t : (A -> T0 A) -> T0 _;
};
alias : Type -> Type -> Type;
alias A B := A -> B;
inductive T1 {
type T1 :=
c : alias T1 T1 -> _;
};
end;

View File

@ -2,8 +2,7 @@ module E2;
open import NegParam;
inductive D {
type D :=
d : T D -> D;
};
end;

View File

@ -1,8 +1,7 @@
module E3;
axiom B : Type;
inductive X {
type X :=
c : B -> (X -> B) -> X;
};
end;

View File

@ -1,12 +1,10 @@
module E4;
inductive Tree (A : Type) {
leaf : Tree A;
type Tree (A : Type) :=
leaf : Tree A |
node : (A -> Tree A) -> Tree A;
};
inductive Bad {
type Bad :=
bad : Tree Bad -> Bad;
};
end;

View File

@ -1,16 +1,13 @@
module E5;
inductive T0 (A : Type){
type T0 (A : Type) :=
c0 : (A -> T0 A) -> T0 A;
};
axiom B : Type;
inductive T1 (A : Type) {
type T1 (A : Type) :=
c1 : (B -> T0 A) -> T1 A;
};
inductive T2 {
type T2 :=
c2 : (B -> (B -> T1 T2)) -> T2;
};
end;

View File

@ -1,8 +1,7 @@
module E6;
axiom A : Type;
inductive T (A : Type) {
type T (A : Type) :=
c : (A -> (A -> (T A -> A))) -> T A;
};
end;

View File

@ -1,11 +1,9 @@
module E7;
inductive T0 (A : Type) (B : Type) {
type T0 (A : Type) (B : Type) :=
c0 : (B -> A) -> T0 A B;
};
inductive T1 (A : Type) {
type T1 (A : Type) :=
c1 : (A -> T0 A (T1 A)) -> T1 A;
};
end;

View File

@ -1,5 +1,4 @@
module E8;
inductive B (A : Type) {
type B (A : Type) :=
b : (A -> B (B A -> A)) -> B A;
};
end;

View File

@ -1,11 +1,9 @@
module E9;
inductive B {
type B :=
b : B;
};
inductive T {
type T :=
c : ((B → T) -> T) -> T;
};
end;

View File

@ -1,5 +1,4 @@
module NegParam;
inductive T (A : Type) {
type T (A : Type) :=
c : (A -> T A) -> T A;
};
end;

View File

@ -1,6 +1,6 @@
$ juvix typecheck tests/negative/Internal/Positivity/E5.juvix --no-colors
>2 /.*\.juvix\:13:21\-23\: error\:
>2 /.*\.juvix\:11:21\-23\: error\:
The type T2 is not strictly positive.
It appears at a negative position in one of the arguments of the constructor c2.
/
>= 1
>= 1

View File

@ -1,5 +1,5 @@
$ juvix typecheck tests/negative/Internal/Positivity/E9.juvix --no-colors
>2 /.*\.juvix\:8:13\-14\: error\:
>2 /.*\.juvix\:7:13\-14\: error\:
The type T is not strictly positive.
It appears at a negative position in one of the arguments of the constructor c.
/

View File

@ -1,7 +1,6 @@
module TooManyArguments;
inductive T (A : Type) {
type T (A : Type) :=
c : A → T A;
};
f : {A : Type} → A → T A;
f {A} a := c {A} a a {a} ;

View File

@ -1,8 +1,7 @@
module UnsolvedMeta;
inductive Proxy (A : Type) {
type Proxy (A : Type) :=
x : Proxy A;
};
t : Proxy _;
t := x;

View File

@ -1,7 +1,6 @@
module WrongConstructorArity;
inductive T {
type T :=
A : T → T;
};
f : T → T;
f (A i x) := i;

View File

@ -1,8 +1,7 @@
module WrongReturnType;
axiom B : Type;
inductive A {
type A :=
c : B;
};
end;

Some files were not shown because too many files have changed in this diff Show More