mirror of
https://github.com/anoma/juvix.git
synced 2025-01-05 22:46:08 +03:00
Change syntax for ind. data types and forbid the empty data type (#1684)
Closes #1644 #1635
This commit is contained in:
parent
8f6eb3ebc7
commit
3fbc9c7c55
@ -12,10 +12,9 @@ foreign ghc {
|
||||
-- Booleans
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
inductive Bool {
|
||||
true : Bool;
|
||||
false : Bool;
|
||||
};
|
||||
type Bool :=
|
||||
true : Bool
|
||||
| false : Bool;
|
||||
|
||||
infixr 2 ||;
|
||||
|| : Bool → Bool → Bool;
|
||||
@ -139,10 +138,9 @@ infix 4 ==String;
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
infixr 5 ∷;
|
||||
inductive List (A : Type) {
|
||||
nil : List A;
|
||||
∷ : A → List A → List A;
|
||||
};
|
||||
type List (A : Type) :=
|
||||
nil : List A
|
||||
| ∷ : A → List A → List A;
|
||||
|
||||
elem : {A : Type} → (A → A → Bool) → A → List A → Bool;
|
||||
elem _ _ nil := false;
|
||||
@ -158,18 +156,16 @@ foldl f z (h ∷ hs) := foldl f (f z h) hs;
|
||||
|
||||
infixr 4 ,;
|
||||
infixr 2 ×;
|
||||
inductive × (A : Type) (B : Type) {
|
||||
type × (A : Type) (B : Type) :=
|
||||
, : A → B → A × B;
|
||||
};
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Maybe
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
inductive Maybe (A : Type) {
|
||||
nothing : Maybe A;
|
||||
type Maybe (A : Type) :=
|
||||
nothing : Maybe A |
|
||||
just : A → Maybe A;
|
||||
};
|
||||
|
||||
from-int : Int → Maybe Int;
|
||||
from-int i := if (i < 0) nothing (just i);
|
||||
|
@ -7,10 +7,9 @@ Juvix has support for the built-in natural type and a few functions that are com
|
||||
|
||||
#+begin_example
|
||||
builtin nat
|
||||
inductive Nat {
|
||||
zero : Nat;
|
||||
type Nat :=
|
||||
zero : Nat |
|
||||
suc : Nat → Nat;
|
||||
};
|
||||
#+end_example
|
||||
|
||||
2. Builtin function definitions.
|
||||
|
@ -19,10 +19,9 @@ foreign c {
|
||||
\}
|
||||
};
|
||||
|
||||
inductive Bool {
|
||||
true : Bool;
|
||||
type Bool :=
|
||||
true : Bool |
|
||||
false : Bool;
|
||||
};
|
||||
|
||||
infix 4 <';
|
||||
axiom <' : Int -> Int -> Bool;
|
||||
|
@ -1,15 +1,16 @@
|
||||
* Inductive data types
|
||||
|
||||
The =inductive= keyword is reserved for declaring inductive data types. An
|
||||
inductive type declaration requires a unique name for its type and its
|
||||
constructors, functions for building its terms. Constructors can be used as
|
||||
normal identifiers and also in patterns. As shown later, one can also provide
|
||||
type parameters to widen the family of inductive types one can define in Juvix.
|
||||
inductive type declaration requires a unique name for its type and a non-empty
|
||||
list of constructor declarations, functions for building the terms of the
|
||||
inductive data type. Constructors can be used as normal identifiers and also in
|
||||
patterns. As shown later, one can also provide type parameters to widen the
|
||||
family of inductive types one can define in Juvix.
|
||||
|
||||
The simplest inductive type is the =Empty= type with no constructors.
|
||||
The simplest inductive type is the =Unit= type with one constructor called =unit=.
|
||||
|
||||
#+begin_example
|
||||
inductive Empty {};
|
||||
type Unit := unit : Unit;
|
||||
#+end_example
|
||||
|
||||
In the following example, we declare the inductive type =Nat=, the unary
|
||||
@ -18,10 +19,9 @@ namely =zero= and =suc=. A term of the type =Nat= is the number one, represented
|
||||
by =suc zero= or the number two represented by =suc (suc zero)=, etc.
|
||||
|
||||
#+begin_example
|
||||
inductive Nat {
|
||||
zero : Nat;
|
||||
suc : Nat -> Nat;
|
||||
};
|
||||
type Nat :=
|
||||
zero : Nat
|
||||
| suc : Nat -> Nat;
|
||||
#+end_example
|
||||
|
||||
The way to use inductive types is by declaring functions by pattern matching.
|
||||
@ -43,10 +43,9 @@ the following type taken from the Juvix standard library:
|
||||
|
||||
#+begin_example
|
||||
infixr 5 ∷;
|
||||
inductive List (A : Type) {
|
||||
nil : List A;
|
||||
∷ : A -> List A -> List A;
|
||||
};
|
||||
type List (A : Type) :=
|
||||
nil : List A
|
||||
| ∷ : A -> List A -> List A;
|
||||
|
||||
elem : {A : Type} -> (A -> A -> Bool) -> A -> List A -> Bool;
|
||||
elem _ _ nil := false;
|
||||
|
@ -10,10 +10,9 @@ of definitions:
|
||||
1. Builtin inductive definitions. For example:
|
||||
#+begin_example
|
||||
builtin nat
|
||||
inductive Nat {
|
||||
zero : Nat;
|
||||
type Nat :=
|
||||
zero : Nat |
|
||||
suc : Nat → Nat;
|
||||
};
|
||||
#+end_example
|
||||
We will call this the canonical definition of natural numbers.
|
||||
|
||||
@ -41,10 +40,9 @@ what are the terms that refer to them. For instance, imagine that we find this
|
||||
definitions in a juvix module:
|
||||
#+begin_src text
|
||||
builtin nat
|
||||
inductive MyNat {
|
||||
z : MyNat;
|
||||
type MyNat :=
|
||||
z : MyNat |
|
||||
s : MyNat → MyNat;
|
||||
};
|
||||
#+end_src
|
||||
We need to take care of the following:
|
||||
1. Check that the definition =MyInt= is up to renaming equal to the canonical
|
||||
|
@ -31,10 +31,9 @@
|
||||
* More examples
|
||||
** Mutual recursion
|
||||
#+begin_src juvix
|
||||
inductive List (A : Type) {
|
||||
nil : List A;
|
||||
type List (A : Type) :=
|
||||
nil : List A |
|
||||
cons : A → List A → List A;
|
||||
};
|
||||
|
||||
even : (A : Type) → List A → Bool;
|
||||
even A nil := true ;
|
||||
|
@ -2,27 +2,28 @@
|
||||
|
||||
We follow a syntactic description of strictly positive inductive data types.
|
||||
|
||||
An inductive type is said to be _strictly positive_ if it does not occur or occurs
|
||||
strictly positively in the types of the arguments of its constructors. A name
|
||||
qualified as strictly positive for an inductive type if it never occurs at a negative
|
||||
position in the types of the arguments of its constructors. We refer to a negative
|
||||
position as those occurrences on the left of an arrow in a type constructor argument.
|
||||
An inductive type is said to be _strictly positive_ if it does not occur or
|
||||
occurs strictly positively in the types of the arguments of its constructors. A
|
||||
name qualified as strictly positive for an inductive type if it never occurs at
|
||||
a negative position in the types of the arguments of its constructors. We refer
|
||||
to a negative position as those occurrences on the left of an arrow in a type
|
||||
constructor argument.
|
||||
|
||||
In the example below, the type =X= occurs strictly positive in =c0= and negatively at
|
||||
the constructor =c1=. Therefore, =X= is not strictly positive.
|
||||
In the example below, the type =X= occurs strictly positive in =c0= and
|
||||
negatively at the constructor =c1=. Therefore, =X= is not strictly positive.
|
||||
|
||||
#+begin_src minijuvix
|
||||
axiom B : Type;
|
||||
inductive X {
|
||||
c0 : (B -> X) -> X;
|
||||
c1 : (X -> X) -> X;
|
||||
};
|
||||
type X :=
|
||||
c0 : (B -> X) -> X
|
||||
| c1 : (X -> X) -> X;
|
||||
#+end_src
|
||||
|
||||
We could also refer to positive parameters as such parameters occurring in no negative positions.
|
||||
For example, the type =B= in the =c0= constructor above is on the left of the arrow =B->X=.
|
||||
Then, =B= is at a negative position. Negative parameters need to be considered when checking strictly
|
||||
positive data types as they may allow to define non-strictly positive data types.
|
||||
We could also refer to positive parameters as such parameters occurring in no
|
||||
negative positions. For example, the type =B= in the =c0= constructor above is
|
||||
on the left of the arrow =B->X=. Then, =B= is at a negative position. Negative
|
||||
parameters need to be considered when checking strictly positive data types as
|
||||
they may allow to define non-strictly positive data types.
|
||||
|
||||
In the example below, the type =T0= is strictly positive. However, the type =T1= is not.
|
||||
Only after unfolding the type application =T0 (T1 A)= in the data constructor =c1=, we can
|
||||
@ -30,13 +31,9 @@ find out that =T1= occurs at a negative position because of =T0=. More precisely
|
||||
the type parameter =A= of =T0= is negative.
|
||||
|
||||
#+begin_src minijuvix
|
||||
inductive T0 (A : Type) {
|
||||
c0 : (A -> T0 A) -> T0 A;
|
||||
};
|
||||
type T0 (A : Type) := c0 : (A -> T0 A) -> T0 A;
|
||||
|
||||
inductive T1 {
|
||||
c1 : T0 T1 -> T1;
|
||||
};
|
||||
type T1 := c1 : T0 T1 -> T1;
|
||||
#+end_src
|
||||
|
||||
|
||||
@ -50,37 +47,25 @@ when typechecking a =Juvix= File.
|
||||
$ cat tests/negative/MicroJuvix/NoStrictlyPositiveDataTypes/E5.mjuvix
|
||||
module E5;
|
||||
positive
|
||||
inductive T0 (A : Type){
|
||||
type T0 (A : Type) :=
|
||||
c0 : (T0 A -> A) -> T0 A;
|
||||
};
|
||||
end;
|
||||
#+end_example
|
||||
|
||||
** Examples of non-strictly data types
|
||||
|
||||
- =NSPos= is at a negative position in =c=.
|
||||
#+begin_src minijuvix
|
||||
inductive Empty {};
|
||||
inductive NSPos {
|
||||
c : ((NSPos -> Empty) -> NSPos) -> NSPos;
|
||||
};
|
||||
#+end_src
|
||||
|
||||
- =Bad= is not strictly positive beceause of the negative parameter =A= of =Tree=.
|
||||
#+begin_src minijuvix
|
||||
inductive Tree (A : Type) {
|
||||
leaf : Tree A;
|
||||
node : (A -> Tree A) -> Tree A;
|
||||
};
|
||||
type Tree (A : Type) :=
|
||||
leaf : Tree A
|
||||
| node : (A -> Tree A) -> Tree A;
|
||||
|
||||
inductive Bad {
|
||||
type Bad :=
|
||||
bad : Tree Bad -> Bad;
|
||||
};
|
||||
#+end_src
|
||||
|
||||
- =A= is a negative parameter.
|
||||
#+begin_src minijuvix
|
||||
inductive B (A : Type) {
|
||||
type B (A : Type) :=
|
||||
b : (A -> B (B A -> A)) -> B A;
|
||||
};
|
||||
#+end_src
|
||||
|
@ -43,11 +43,10 @@ showList : List Nat → String;
|
||||
showList xs := "[" ++str intercalate "," (map natToStr xs) ++str "]";
|
||||
|
||||
--- A Peg represents a peg in the towers of Hanoi game
|
||||
inductive Peg {
|
||||
left : Peg;
|
||||
middle : Peg;
|
||||
right : Peg;
|
||||
};
|
||||
type Peg :=
|
||||
left : Peg
|
||||
| middle : Peg
|
||||
| right : Peg;
|
||||
|
||||
showPeg : Peg → String;
|
||||
showPeg left := "left";
|
||||
@ -56,9 +55,7 @@ showPeg right := "right";
|
||||
|
||||
|
||||
--- A Move represents a move between pegs
|
||||
inductive Move {
|
||||
move : Peg → Peg → Move;
|
||||
};
|
||||
type Move := move : Peg → Peg → Move;
|
||||
|
||||
showMove : Move → String;
|
||||
showMove (move from to) := showPeg from ++str " -> " ++str showPeg to;
|
||||
|
@ -6,9 +6,8 @@ open import Logic.Symbol public;
|
||||
open import Logic.Extra;
|
||||
|
||||
--- A 3x3 grid of ;Square;s
|
||||
inductive Board {
|
||||
type Board :=
|
||||
board : List (List Square) → Board;
|
||||
};
|
||||
|
||||
--- Returns the list of numbers corresponding to the empty ;Square;s
|
||||
possibleMoves : List Square → List Nat;
|
||||
|
@ -4,18 +4,16 @@ open import Stdlib.Prelude;
|
||||
open import Logic.Extra;
|
||||
open import Logic.Board;
|
||||
|
||||
inductive Error {
|
||||
type Error :=
|
||||
--- no error occurred
|
||||
noError : Error;
|
||||
noError : Error |
|
||||
--- a non-fatal error occurred
|
||||
continue : String → Error;
|
||||
continue : String → Error |
|
||||
--- a fatal occurred
|
||||
terminate : String → Error;
|
||||
};
|
||||
terminate : String → Error;
|
||||
|
||||
inductive GameState {
|
||||
type GameState :=
|
||||
state : Board → Symbol → Error → GameState;
|
||||
};
|
||||
|
||||
--- Textual representation of a ;GameState;
|
||||
showGameState : GameState → String;
|
||||
|
@ -6,12 +6,12 @@ open import Stdlib.Data.Nat.Ord;
|
||||
open import Logic.Extra;
|
||||
|
||||
--- A square is each of the holes in a board
|
||||
inductive Square {
|
||||
type Square :=
|
||||
--- An empty square has a ;Nat; that uniquely identifies it
|
||||
empty : Nat → Square;
|
||||
--- An occupied square has a ;Symbol; in it
|
||||
occupied : Symbol → Square;
|
||||
};
|
||||
empty : Nat → Square
|
||||
-- TODO: Check the line below using Judoc
|
||||
-- - An occupied square has a ;Symbol; in it
|
||||
| occupied : Symbol → Square;
|
||||
|
||||
--- Equality for ;Square;s
|
||||
==Square : Square → Square → Bool;
|
||||
|
@ -4,12 +4,11 @@ module Logic.Symbol;
|
||||
open import Stdlib.Prelude;
|
||||
|
||||
--- A symbol represents a token that can be placed in a square
|
||||
inductive Symbol {
|
||||
type Symbol :=
|
||||
--- The circle token
|
||||
O : Symbol;
|
||||
O : Symbol |
|
||||
--- The cross token
|
||||
X : Symbol;
|
||||
};
|
||||
|
||||
--- Equality for ;Symbol;s
|
||||
==Symbol : Symbol → Symbol → Bool;
|
||||
|
@ -93,11 +93,10 @@ lightBackgroundColor := "#c7737a";
|
||||
|
||||
-- Rendering
|
||||
|
||||
inductive Align {
|
||||
left : Align;
|
||||
right : Align;
|
||||
center : Align;
|
||||
};
|
||||
type Align :=
|
||||
left : Align
|
||||
| right : Align
|
||||
| center : Align;
|
||||
|
||||
alignNum : Align → Nat;
|
||||
alignNum left := zero;
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit a2790ca49ceeb569559224abe1587305ea1861fa
|
||||
Subproject commit bdcf1ef0889a08de1ec334a598efbbf622607884
|
@ -279,7 +279,7 @@ goInductive ty@InductiveDef {..} = do
|
||||
_inductiveBuiltin = _inductiveBuiltin,
|
||||
_inductiveName = goSymbol _inductiveName,
|
||||
_inductiveType = fromMaybe (Abstract.ExpressionUniverse (smallUniverse loc)) _inductiveType',
|
||||
_inductiveConstructors = _inductiveConstructors',
|
||||
_inductiveConstructors = toList _inductiveConstructors',
|
||||
_inductiveExamples = _inductiveExamples',
|
||||
_inductivePositive = ty ^. inductivePositive
|
||||
}
|
||||
|
@ -411,9 +411,9 @@ goInductive def = do
|
||||
inductiveHeader =
|
||||
runReader defaultOptions (ppInductiveSignature def) >>= ppCodeHtml
|
||||
|
||||
goConstructors :: forall r. Members '[Reader HtmlOptions, Reader NormalizedTable] r => [InductiveConstructorDef 'Scoped] -> Sem r Html
|
||||
goConstructors :: forall r. Members '[Reader HtmlOptions, Reader NormalizedTable] r => NonEmpty (InductiveConstructorDef 'Scoped) -> Sem r Html
|
||||
goConstructors cc = do
|
||||
tbl' <- table . tbody <$> mconcatMapM goConstructor cc
|
||||
tbl' <- table . tbody <$> mconcatMapM goConstructor (toList cc)
|
||||
return $
|
||||
Html.div ! Attr.class_ "subs constructors" $
|
||||
(p ! Attr.class_ "caption" $ "Constructors")
|
||||
|
@ -36,6 +36,7 @@ import Juvix.Data.Keyword.All
|
||||
kwMapsTo,
|
||||
kwModule,
|
||||
kwOpen,
|
||||
kwPipe,
|
||||
kwPositive,
|
||||
kwPostfix,
|
||||
kwPublic,
|
||||
@ -76,6 +77,7 @@ allKeywords =
|
||||
kwLet,
|
||||
kwModule,
|
||||
kwOpen,
|
||||
kwPipe,
|
||||
kwPostfix,
|
||||
kwPublic,
|
||||
kwRightArrow,
|
||||
|
@ -249,7 +249,7 @@ data InductiveDef (s :: Stage) = InductiveDef
|
||||
_inductiveName :: InductiveName s,
|
||||
_inductiveParameters :: [InductiveParameter s],
|
||||
_inductiveType :: Maybe (ExpressionType s),
|
||||
_inductiveConstructors :: [InductiveConstructorDef s],
|
||||
_inductiveConstructors :: NonEmpty (InductiveConstructorDef s),
|
||||
_inductivePositive :: Bool
|
||||
}
|
||||
|
||||
|
@ -108,13 +108,16 @@ groupStatements = reverse . map reverse . uncurry cons . foldl' aux ([], [])
|
||||
symbolParsed sym = case sing :: SStage s of
|
||||
SParsed -> sym
|
||||
SScoped -> sym ^. S.nameConcrete
|
||||
|
||||
syms :: InductiveDef s -> [Symbol]
|
||||
syms InductiveDef {..} = case sing :: SStage s of
|
||||
SParsed -> _inductiveName : map (^. constructorName) _inductiveConstructors
|
||||
SScoped ->
|
||||
_inductiveName
|
||||
^. S.nameConcrete
|
||||
: map (^. constructorName . S.nameConcrete) _inductiveConstructors
|
||||
syms InductiveDef {..} =
|
||||
let constructors = toList _inductiveConstructors
|
||||
in case sing :: SStage s of
|
||||
SParsed -> _inductiveName : map (^. constructorName) constructors
|
||||
SScoped ->
|
||||
_inductiveName
|
||||
^. S.nameConcrete
|
||||
: map (^. constructorName . S.nameConcrete) constructors
|
||||
|
||||
instance SingI s => PrettyCode [Statement s] where
|
||||
ppCode ss = vsep2 <$> mapM (fmap vsep . mapM (fmap endSemicolon . ppCode)) (groupStatements ss)
|
||||
@ -288,8 +291,19 @@ instance SingI s => PrettyCode (InductiveDef s) where
|
||||
ppCode d@InductiveDef {..} = do
|
||||
doc' <- mapM ppCode _inductiveDoc
|
||||
sig' <- ppInductiveSignature d
|
||||
inductiveConstructors' <- ppBlock _inductiveConstructors
|
||||
return $ doc' ?<> sig' <+> inductiveConstructors'
|
||||
inductiveConstructors' <- ppConstructorBlock _inductiveConstructors
|
||||
return $
|
||||
doc' ?<> sig'
|
||||
<+> kwAssign
|
||||
<> line
|
||||
<> (indent' . align) inductiveConstructors'
|
||||
where
|
||||
ppConstructorBlock ::
|
||||
NonEmpty (InductiveConstructorDef s) -> Sem r (Doc Ann)
|
||||
ppConstructorBlock cs =
|
||||
do
|
||||
concatWith (\x y -> x <> softline <> kwPipe <+> y)
|
||||
<$> mapM ppCode (toList cs)
|
||||
|
||||
dotted :: Foldable f => f (Doc Ann) -> Doc Ann
|
||||
dotted = concatWith (surround kwDot)
|
||||
|
@ -496,10 +496,16 @@ inductiveDef _inductiveBuiltin = do
|
||||
_inductivePositive <- isJust <$> optional (kw kwPositive)
|
||||
kw kwInductive
|
||||
_inductiveDoc <- getJudoc
|
||||
_inductiveName <- symbol
|
||||
_inductiveParameters <- P.many inductiveParam
|
||||
_inductiveType <- optional (kw kwColon >> parseExpressionAtoms)
|
||||
_inductiveConstructors <- braces $ P.sepEndBy constructorDef (kw kwSemicolon)
|
||||
_inductiveName <- symbol P.<?> "<type name>"
|
||||
_inductiveParameters <-
|
||||
P.many inductiveParam
|
||||
P.<?> "<type parameter e.g. '(A : Type)'>"
|
||||
_inductiveType <-
|
||||
optional (kw kwColon >> parseExpressionAtoms)
|
||||
P.<?> "<type annotation e.g. ': Type'>"
|
||||
kw kwAssign P.<?> "<assignment symbol ':='>"
|
||||
_inductiveConstructors <-
|
||||
P.sepBy1 constructorDef (kw kwPipe) P.<?> "<constructor definition>"
|
||||
return InductiveDef {..}
|
||||
|
||||
inductiveParam :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r (InductiveParameter 'Parsed)
|
||||
@ -512,9 +518,10 @@ inductiveParam = parens $ do
|
||||
constructorDef :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r (InductiveConstructorDef 'Parsed)
|
||||
constructorDef = do
|
||||
_constructorDoc <- optional stashJudoc >> getJudoc
|
||||
_constructorName <- symbol
|
||||
kw kwColon
|
||||
_constructorType <- parseExpressionAtoms
|
||||
_constructorName <- symbol P.<?> "<constructor name>"
|
||||
_constructorType <-
|
||||
kw kwColon >> parseExpressionAtoms
|
||||
P.<?> "<constructor type signature (:)>"
|
||||
return InductiveConstructorDef {..}
|
||||
|
||||
wildcard :: Members '[InfoTableBuilder, JudocStash, NameIdGen] r => ParsecS r Wildcard
|
||||
|
@ -94,6 +94,9 @@ kwRightArrow = unicodeKw Str.toAscii Str.toUnicode
|
||||
kwSemicolon :: Keyword
|
||||
kwSemicolon = asciiKw Str.semicolon
|
||||
|
||||
kwPipe :: Keyword
|
||||
kwPipe = asciiKw Str.pipe
|
||||
|
||||
kwType :: Keyword
|
||||
kwType = asciiKw Str.type_
|
||||
|
||||
|
@ -33,7 +33,7 @@ in_ :: IsString s => s
|
||||
in_ = "in"
|
||||
|
||||
inductive :: IsString s => s
|
||||
inductive = "inductive"
|
||||
inductive = "type"
|
||||
|
||||
function :: IsString s => s
|
||||
function = "function"
|
||||
|
@ -65,12 +65,6 @@ tests =
|
||||
$(mkRelFile "TerminatingG.juvix")
|
||||
$ \case
|
||||
ErrNoLexOrder {} -> Nothing,
|
||||
NegTest
|
||||
"f x := f x is not terminating"
|
||||
$(mkRelDir ".")
|
||||
$(mkRelFile "ToEmpty.juvix")
|
||||
$ \case
|
||||
ErrNoLexOrder {} -> Nothing,
|
||||
NegTest
|
||||
"Tree"
|
||||
$(mkRelDir ".")
|
||||
|
@ -71,10 +71,6 @@ tests =
|
||||
testsWithKeyword :: [PosTest]
|
||||
testsWithKeyword =
|
||||
[ PosTest
|
||||
"terminating added to fx:=fx"
|
||||
$(mkRelDir ".")
|
||||
$(mkRelFile "ToEmpty.juvix"),
|
||||
PosTest
|
||||
"terminating for all functions in the mutual block"
|
||||
$(mkRelDir ".")
|
||||
$(mkRelFile "Mutual.juvix"),
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- invalid memory access
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- no matching case branch
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- case stack height mismatch
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- case type mismatch
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- case
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- trees
|
||||
|
||||
inductive tree {
|
||||
type tree {
|
||||
node1 : tree -> tree;
|
||||
node2 : tree -> tree -> tree;
|
||||
node3 : tree -> tree -> tree -> tree;
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- lists
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- structural equality
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- temporary stack with branching
|
||||
|
||||
inductive tree {
|
||||
type tree {
|
||||
leaf : tree;
|
||||
node : tree -> tree -> tree;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- Church numerals
|
||||
|
||||
inductive Pair {
|
||||
type Pair {
|
||||
pair : * -> * -> Pair;
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- Nested lists
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- streams without memoization
|
||||
|
||||
inductive stream {
|
||||
type stream {
|
||||
cons : integer -> (unit -> stream) -> stream;
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- case
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- trees
|
||||
|
||||
inductive tree : Type {
|
||||
type tree : Type {
|
||||
node1 : tree -> tree;
|
||||
node2 : tree -> tree -> tree;
|
||||
node3 : tree -> tree -> tree -> tree;
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- lists
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- structural equality
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- nested case, let & if
|
||||
|
||||
inductive tree {
|
||||
type tree {
|
||||
leaf : tree;
|
||||
node : tree -> tree -> tree;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- functional queues
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
@ -15,7 +15,7 @@ def rev' := \l \acc case l of {
|
||||
|
||||
def rev := \l rev' l nil;
|
||||
|
||||
inductive Queue {
|
||||
type Queue {
|
||||
queue : list -> list -> Queue;
|
||||
};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- Church numerals
|
||||
|
||||
inductive Pair {
|
||||
type Pair {
|
||||
pair : any -> any -> Pair;
|
||||
};
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
-- streams without memoization
|
||||
|
||||
inductive Unit {
|
||||
type Unit {
|
||||
unit : Unit;
|
||||
};
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- nested lists
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,11 +1,11 @@
|
||||
-- merge sort
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
||||
inductive product {
|
||||
type product {
|
||||
pair : any -> any -> product;
|
||||
};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- global variables
|
||||
|
||||
inductive Unit {
|
||||
type Unit {
|
||||
unit : Unit;
|
||||
};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- eta-expansion of builtins and constructors
|
||||
|
||||
inductive stream {
|
||||
type stream {
|
||||
cons : any -> any -> stream;
|
||||
};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- match
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
cons : any -> list -> list;
|
||||
nil : list;
|
||||
};
|
||||
@ -14,7 +14,7 @@ def sum2 := \x {
|
||||
}
|
||||
};
|
||||
|
||||
inductive tree {
|
||||
type tree {
|
||||
leaf : tree;
|
||||
node : tree -> tree -> tree;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- type annotations
|
||||
|
||||
inductive list : Π A : Type, Type {
|
||||
type list : Π A : Type, Type {
|
||||
cons : Π A : Type, A → list A → list A;
|
||||
nil : Π A : Type, list A;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- type application and abstraction
|
||||
|
||||
inductive list : Π A : Type, Type {
|
||||
type list : Π A : Type, Type {
|
||||
cons : Π A : Type, A → list A → list A;
|
||||
nil : Π A : Type, list A;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- applications with lets and cases in function position
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,8 +1,7 @@
|
||||
module FunctionReturnConstructor;
|
||||
|
||||
inductive Foo {
|
||||
type Foo :=
|
||||
foo : Foo;
|
||||
};
|
||||
|
||||
main : Foo;
|
||||
main := foo;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module FunctionType;
|
||||
|
||||
inductive A {
|
||||
type A :=
|
||||
a : A;
|
||||
};
|
||||
|
||||
main : Type;
|
||||
main := (A : Type) -> (B : Type) -> A -> B;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module Inductive;
|
||||
|
||||
inductive A (B : Type) {
|
||||
type A (B : Type) :=
|
||||
a : A B;
|
||||
};
|
||||
|
||||
main : Type -> Type;
|
||||
main := A;
|
||||
|
@ -2,10 +2,9 @@ module MatchConstructor;
|
||||
|
||||
open import Stdlib.Prelude;
|
||||
|
||||
inductive Foo {
|
||||
foo1 : Nat → Foo;
|
||||
type Foo :=
|
||||
foo1 : Nat → Foo |
|
||||
foo2 : Foo;
|
||||
};
|
||||
|
||||
toNat : Foo → Nat;
|
||||
toNat (foo1 n) := n;
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- fold a list of N integers
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- map and fold a list of N integers K times
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- successively map K functions to a list of N integers
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : * -> list -> list;
|
||||
};
|
||||
|
@ -1,11 +1,11 @@
|
||||
-- optionally sum N integers from a binary tree K times
|
||||
|
||||
inductive tree {
|
||||
type tree {
|
||||
node : int -> tree -> tree -> tree;
|
||||
leaf : tree;
|
||||
};
|
||||
|
||||
inductive maybe {
|
||||
type maybe {
|
||||
just : any -> maybe;
|
||||
nothing : maybe;
|
||||
};
|
||||
|
@ -6,10 +6,9 @@ open import Stdlib.Prelude;
|
||||
open import Data.Int;
|
||||
open import Data.Int.Ops;
|
||||
|
||||
inductive Tree {
|
||||
leaf : Tree;
|
||||
type Tree :=
|
||||
leaf : Tree |
|
||||
node : Int -> Tree -> Tree -> Tree;
|
||||
};
|
||||
|
||||
mknode : Int -> Tree -> Tree;
|
||||
mknode n t := node n t t;
|
||||
|
@ -1,11 +1,11 @@
|
||||
-- merge sort
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
||||
inductive product {
|
||||
type product {
|
||||
pair : any -> any -> product;
|
||||
};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
-- Compute the Nth prime
|
||||
|
||||
inductive list {
|
||||
type list {
|
||||
nil : list;
|
||||
cons : any -> list -> list;
|
||||
};
|
||||
|
@ -2,10 +2,9 @@ module Foo.Data.Bool;
|
||||
|
||||
import Stdlib.Data.Bool;
|
||||
|
||||
inductive Bool {
|
||||
true : Bool;
|
||||
type Bool :=
|
||||
true : Bool |
|
||||
false : Bool;
|
||||
};
|
||||
|
||||
not : Bool → Bool;
|
||||
not true := false;
|
||||
|
@ -1,9 +1,8 @@
|
||||
module M;
|
||||
|
||||
inductive Nat {
|
||||
O : Nat;
|
||||
type Nat :=
|
||||
O : Nat |
|
||||
S : Nat -> Nat;
|
||||
};
|
||||
|
||||
fun : Nat -> Nat;
|
||||
fun (S {S {x}}) := x;
|
||||
|
@ -1,13 +1,11 @@
|
||||
module M;
|
||||
|
||||
inductive Bool {
|
||||
false : Bool;
|
||||
true : Bool;
|
||||
};
|
||||
type Bool :=
|
||||
true : Bool
|
||||
| false : Bool;
|
||||
|
||||
inductive Pair (A : Type) (B : Type) {
|
||||
type Pair (A : Type) (B : Type) :=
|
||||
mkPair : A → B → Pair A B;
|
||||
};
|
||||
|
||||
f : _ → _;
|
||||
f (mkPair false true) := true;
|
||||
|
@ -1,14 +1,12 @@
|
||||
module AmbiguousConstructor;
|
||||
module M;
|
||||
inductive T1 {
|
||||
type T1 :=
|
||||
A : T1;
|
||||
};
|
||||
end;
|
||||
|
||||
module N;
|
||||
inductive T2 {
|
||||
type T2 :=
|
||||
A : T2;
|
||||
};
|
||||
end;
|
||||
|
||||
open M;
|
||||
|
@ -2,9 +2,8 @@ module AmbiguousExport;
|
||||
|
||||
module N;
|
||||
module O;
|
||||
inductive T {
|
||||
type T :=
|
||||
A : T;
|
||||
};
|
||||
end;
|
||||
end;
|
||||
|
||||
|
@ -3,9 +3,7 @@ module AmbiguousSymbol;
|
||||
axiom A : Type;
|
||||
|
||||
module O;
|
||||
inductive T {
|
||||
A : T;
|
||||
};
|
||||
type T := A : T;
|
||||
end;
|
||||
open O;
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
module Clause;
|
||||
|
||||
inductive Pair (a : Type) (b : Type) {
|
||||
mkPair : a → b → Pair a b
|
||||
};
|
||||
type Pair (a : Type) (b : Type) :=
|
||||
mkPair : a → b → Pair a b;
|
||||
|
||||
fst : (a : Type) → (b : Type) → Pair a b → a ;
|
||||
fst _ _ (mkPair _ _ x x) := x;
|
||||
|
@ -1,8 +1,6 @@
|
||||
module Lambda;
|
||||
|
||||
inductive Pair (a : Type) (b : Type) {
|
||||
mkPair : a → b → Pair a b
|
||||
};
|
||||
type Pair (a : Type) (b : Type) := mkPair : a → b → Pair a b;
|
||||
|
||||
fst : (a : Type) → (b : Type) → Pair a b → a ;
|
||||
fst := λ { _ _ (mkPair _ _ x x) := x };
|
||||
|
@ -2,10 +2,9 @@ module Sample.Definitions;
|
||||
|
||||
axiom A : Type;
|
||||
|
||||
inductive Nat {
|
||||
zero : Nat;
|
||||
type Nat :=
|
||||
zero : Nat |
|
||||
suc : Nat -> Nat;
|
||||
};
|
||||
|
||||
f : A -> Nat;
|
||||
f a := zero;
|
||||
|
@ -1,5 +1,5 @@
|
||||
module DuplicateInductiveParameterName;
|
||||
|
||||
inductive T (A : Type) (B : Type) (A : Type) {};
|
||||
type T (A : Type) (B : Type) (A : Type) := c : T A B A;
|
||||
|
||||
end;
|
@ -2,9 +2,8 @@ module InfixErrorP;
|
||||
|
||||
infix 5 , ;
|
||||
|
||||
inductive Pair {
|
||||
, : Type → Type → Pair
|
||||
};
|
||||
type Pair :=
|
||||
, : Type → Type → Pair;
|
||||
|
||||
fst : Pair → Type;
|
||||
fst (x , ) := x;
|
||||
|
@ -1,7 +1,6 @@
|
||||
module ExpectedExplicitArgument;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : A → T A;
|
||||
};
|
||||
|
||||
f : {A : Type} → A → T A;
|
||||
f {A} a := c {A} {a};
|
||||
|
@ -1,7 +1,6 @@
|
||||
module ExpectedExplicitPattern;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : A → T A;
|
||||
};
|
||||
|
||||
f : {A : Type} → T A → A;
|
||||
f {_} {c a} := a;
|
||||
|
@ -1,11 +1,9 @@
|
||||
module ExpectedFunctionType;
|
||||
inductive Pair (A : Type) {
|
||||
type Pair (A : Type) :=
|
||||
mkPair : A → A → Pair A;
|
||||
};
|
||||
|
||||
inductive B {
|
||||
type B :=
|
||||
b : B;
|
||||
};
|
||||
|
||||
f : Pair B → Pair B;
|
||||
f (mkPair a b) := a b;
|
||||
|
@ -1,7 +1,6 @@
|
||||
module FunctionApplied;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : A → T A;
|
||||
};
|
||||
|
||||
f : {A : Type} → A → T A;
|
||||
f {A} a := c {(A → A) A} a;
|
||||
|
@ -1,7 +1,6 @@
|
||||
module FunctionPattern;
|
||||
inductive T {
|
||||
type T :=
|
||||
A : T;
|
||||
};
|
||||
|
||||
f : (T → T) → T;
|
||||
f A := A;
|
||||
|
@ -1,7 +1,6 @@
|
||||
module LhsTooManyPatterns;
|
||||
inductive T {
|
||||
type T :=
|
||||
A : T;
|
||||
};
|
||||
|
||||
f : T → T;
|
||||
f A x := A;
|
||||
|
@ -1,11 +1,9 @@
|
||||
module MultiWrongType;
|
||||
inductive A {
|
||||
type A :=
|
||||
a : A;
|
||||
};
|
||||
|
||||
inductive B {
|
||||
type B :=
|
||||
b : B;
|
||||
};
|
||||
|
||||
f : A;
|
||||
f := b;
|
||||
|
@ -1,11 +1,9 @@
|
||||
module PatternConstructor;
|
||||
inductive A {
|
||||
type A :=
|
||||
a : A;
|
||||
};
|
||||
|
||||
inductive B {
|
||||
type B :=
|
||||
b : B;
|
||||
};
|
||||
|
||||
f : A → B;
|
||||
f b := b;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module E1;
|
||||
|
||||
axiom B : Type;
|
||||
inductive X {
|
||||
type X :=
|
||||
c : (X -> B) -> X;
|
||||
};
|
||||
|
||||
end;
|
@ -1,14 +1,11 @@
|
||||
module E10;
|
||||
|
||||
inductive T0 (A : Type) {
|
||||
type T0 (A : Type) :=
|
||||
t : (A -> T0 A) -> T0 A;
|
||||
};
|
||||
|
||||
alias : Type -> Type;
|
||||
alias := T0;
|
||||
|
||||
inductive T1 {
|
||||
c : (alias T1 -> T1;
|
||||
};
|
||||
type T1 := c : alias T1 -> T1;
|
||||
|
||||
end;
|
@ -1,14 +1,12 @@
|
||||
module E11;
|
||||
|
||||
inductive T0 (A : Type) {
|
||||
type T0 (A : Type) :=
|
||||
t : (A -> T0 A) -> T0 _;
|
||||
};
|
||||
|
||||
alias : Type -> Type -> Type;
|
||||
alias A B := A -> B;
|
||||
|
||||
inductive T1 {
|
||||
type T1 :=
|
||||
c : alias T1 T1 -> _;
|
||||
};
|
||||
|
||||
end;
|
@ -2,8 +2,7 @@ module E2;
|
||||
|
||||
open import NegParam;
|
||||
|
||||
inductive D {
|
||||
type D :=
|
||||
d : T D -> D;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module E3;
|
||||
|
||||
axiom B : Type;
|
||||
inductive X {
|
||||
type X :=
|
||||
c : B -> (X -> B) -> X;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,12 +1,10 @@
|
||||
module E4;
|
||||
|
||||
inductive Tree (A : Type) {
|
||||
leaf : Tree A;
|
||||
type Tree (A : Type) :=
|
||||
leaf : Tree A |
|
||||
node : (A -> Tree A) -> Tree A;
|
||||
};
|
||||
|
||||
inductive Bad {
|
||||
type Bad :=
|
||||
bad : Tree Bad -> Bad;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,16 +1,13 @@
|
||||
module E5;
|
||||
|
||||
inductive T0 (A : Type){
|
||||
type T0 (A : Type) :=
|
||||
c0 : (A -> T0 A) -> T0 A;
|
||||
};
|
||||
|
||||
axiom B : Type;
|
||||
inductive T1 (A : Type) {
|
||||
type T1 (A : Type) :=
|
||||
c1 : (B -> T0 A) -> T1 A;
|
||||
};
|
||||
|
||||
inductive T2 {
|
||||
type T2 :=
|
||||
c2 : (B -> (B -> T1 T2)) -> T2;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module E6;
|
||||
|
||||
axiom A : Type;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : (A -> (A -> (T A -> A))) -> T A;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,11 +1,9 @@
|
||||
module E7;
|
||||
|
||||
inductive T0 (A : Type) (B : Type) {
|
||||
type T0 (A : Type) (B : Type) :=
|
||||
c0 : (B -> A) -> T0 A B;
|
||||
};
|
||||
|
||||
inductive T1 (A : Type) {
|
||||
type T1 (A : Type) :=
|
||||
c1 : (A -> T0 A (T1 A)) -> T1 A;
|
||||
};
|
||||
|
||||
end;
|
||||
|
@ -1,5 +1,4 @@
|
||||
module E8;
|
||||
inductive B (A : Type) {
|
||||
type B (A : Type) :=
|
||||
b : (A -> B (B A -> A)) -> B A;
|
||||
};
|
||||
end;
|
||||
|
@ -1,11 +1,9 @@
|
||||
module E9;
|
||||
|
||||
inductive B {
|
||||
type B :=
|
||||
b : B;
|
||||
};
|
||||
|
||||
inductive T {
|
||||
type T :=
|
||||
c : ((B → T) -> T) -> T;
|
||||
};
|
||||
|
||||
end;
|
@ -1,5 +1,4 @@
|
||||
module NegParam;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : (A -> T A) -> T A;
|
||||
};
|
||||
end;
|
||||
|
@ -1,6 +1,6 @@
|
||||
$ juvix typecheck tests/negative/Internal/Positivity/E5.juvix --no-colors
|
||||
>2 /.*\.juvix\:13:21\-23\: error\:
|
||||
>2 /.*\.juvix\:11:21\-23\: error\:
|
||||
The type T2 is not strictly positive.
|
||||
It appears at a negative position in one of the arguments of the constructor c2.
|
||||
/
|
||||
>= 1
|
||||
>= 1
|
@ -1,5 +1,5 @@
|
||||
$ juvix typecheck tests/negative/Internal/Positivity/E9.juvix --no-colors
|
||||
>2 /.*\.juvix\:8:13\-14\: error\:
|
||||
>2 /.*\.juvix\:7:13\-14\: error\:
|
||||
The type T is not strictly positive.
|
||||
It appears at a negative position in one of the arguments of the constructor c.
|
||||
/
|
||||
|
@ -1,7 +1,6 @@
|
||||
module TooManyArguments;
|
||||
inductive T (A : Type) {
|
||||
type T (A : Type) :=
|
||||
c : A → T A;
|
||||
};
|
||||
|
||||
f : {A : Type} → A → T A;
|
||||
f {A} a := c {A} a a {a} ;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module UnsolvedMeta;
|
||||
|
||||
inductive Proxy (A : Type) {
|
||||
type Proxy (A : Type) :=
|
||||
x : Proxy A;
|
||||
};
|
||||
|
||||
t : Proxy _;
|
||||
t := x;
|
||||
|
@ -1,7 +1,6 @@
|
||||
module WrongConstructorArity;
|
||||
inductive T {
|
||||
type T :=
|
||||
A : T → T;
|
||||
};
|
||||
|
||||
f : T → T;
|
||||
f (A i x) := i;
|
||||
|
@ -1,8 +1,7 @@
|
||||
module WrongReturnType;
|
||||
|
||||
axiom B : Type;
|
||||
inductive A {
|
||||
type A :=
|
||||
c : B;
|
||||
};
|
||||
|
||||
end;
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user