This PR removes the CaseBranchImplicit error from the scoper. This error
is already handled in the arity/typechecker with a good error message:
The arity checker error message for
```
case b of {
| {{true}} := false
```
is
```
Expected an explicit pattern but found an implicit instance pattern: {{true}}
```
* Closes https://github.com/anoma/juvix/issues/2356
* Closes#1646
Implements a basic trait framework. A simple instance search mechanism
is included which fails if there is more than one matching instance at
any step.
Example usage:
```
import Stdlib.Prelude open hiding {Show; mkShow; show};
trait
type Show A :=
mkShow {
show : A → String
};
instance
showStringI : Show String := mkShow (show := id);
instance
showBoolI : Show Bool := mkShow (show := λ{x := if x "true" "false"});
instance
showNatI : Show Nat := mkShow (show := natToString);
showList {A} : {{Show A}} → List A → String
| nil := "nil"
| (h :: t) := Show.show h ++str " :: " ++str showList t;
instance
showListI {A} {{Show A}} : Show (List A) := mkShow (show := showList);
showMaybe {A} {{Show A}} : Maybe A → String
| (just x) := "just (" ++str Show.show x ++str ")"
| nothing := "nothing";
instance
showMaybeI {A} {{Show A}} : Show (Maybe A) := mkShow (show := showMaybe);
main : IO :=
printStringLn (Show.show true) >>
printStringLn (Show.show false) >>
printStringLn (Show.show 3) >>
printStringLn (Show.show [true; false]) >>
printStringLn (Show.show [1; 2; 3]) >>
printStringLn (Show.show [1; 2]) >>
printStringLn (Show.show [true; false]) >>
printStringLn (Show.show [just true; nothing; just false]) >>
printStringLn (Show.show [just [1]; nothing; just [2; 3]]) >>
printStringLn (Show.show "abba") >>
printStringLn (Show.show ["a"; "b"; "c"; "d"]);
```
It is possible to manually provide an instance and to match on implicit
instances:
```
f {A} : {{Show A}} -> A -> String
| {{mkShow s}} x -> s x;
f' {A} : {{Show A}} → A → String
| {{M}} x := Show.show {{M}} x;
```
The trait parameters in instance types are checked to be structurally
decreasing to avoid looping in the instance search. So the following is
rejected:
```
type Box A := box A;
trait
type T A := mkT { pp : A → A };
instance
boxT {A} : {{T (Box A)}} → T (Box A) := mkT (λ{x := x});
```
We check whether each parameter is a strict subterm of some trait
parameter in the target. This ordering is included in the finite
multiset extension of the subterm ordering, hence terminating.
This PR adds a builtin integer type to the surface language that is
compiled to the backend integer type.
## Inductive definition
The `Int` type is defined in the standard library as:
```
builtin int
type Int :=
| --- ofNat n represents the integer n
ofNat : Nat -> Int
| --- negSuc n represents the integer -(n + 1)
negSuc : Nat -> Int;
```
## New builtin functions defined in the standard library
```
intToString : Int -> String;
+ : Int -> Int -> Int;
neg : Int -> Int;
* : Int -> Int -> Int;
- : Int -> Int -> Int;
div : Int -> Int -> Int;
mod : Int -> Int -> Int;
== : Int -> Int -> Bool;
<= : Int -> Int -> Bool;
< : Int -> Int -> Bool;
```
Additional builtins required in the definition of the other builtins:
```
negNat : Nat -> Int;
intSubNat : Nat -> Nat -> Int;
nonNeg : Int -> Bool;
```
## REPL types of literals
In the REPL, non-negative integer literals have the inferred type `Nat`,
negative integer literals have the inferred type `Int`.
```
Stdlib.Prelude> :t 1
Nat
Stdlib.Prelude> :t -1
Int
:t let x : Int := 1 in x
Int
```
## The standard library Prelude
The definitions of `*`, `+`, `div` and `mod` are not exported from the
standard library prelude as these would conflict with the definitions
from `Stdlib.Data.Nat`.
Stdlib.Prelude
```
open import Stdlib.Data.Int hiding {+;*;div;mod} public;
```
* Closes https://github.com/anoma/juvix/issues/1679
* Closes https://github.com/anoma/juvix/issues/1984
---------
Co-authored-by: Lukasz Czajka <lukasz@heliax.dev>
Previously we were:
* discarding the types table
* discarding the name ids state
after processing an expression in the REPL.
For example evaluating:
```
let even : _; odd : _; odd zero := false; odd (suc n) := not (even n); even zero := true; even (suc n) := not (odd n) in even 10
```
would loop in the REPL.
We noticed that the `n` in `suc n` was being given type `Type` instead
of `Nat`. This was because the name id given to n was incorrect, the
REPL started using name ids from 0 again.
We fixed this issue by storing information, including the types table
and name ids state in the Artifacts data structure that is returned when
we run the pipeline for the first time. This information is then used
when we call functions to compile / type check REPL expressions.
---------
Co-authored-by: Paul Cadman <git@paulcadman.dev>