module Judoc; axiom A : Type; axiom b : Type; inductive T { }; --- he ;id A; and ;A A id T A id; this is another ;id id id; example --- hahahah --- and another one ;T; id : {A : Type} → A → A; id a := a; --- hellowww id2 : {A : Type} → A → A; id2 a := a; end;