1
1
mirror of https://github.com/anoma/juvix.git synced 2024-12-14 17:32:00 +03:00
juvix/notes/Example.agda
2021-10-19 19:27:02 +02:00

100 lines
2.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module MiniJuvix.Syntax.Core where
open import Haskell.Prelude
open import Agda.Builtin.Equality
-- language extensions
{-# FOREIGN AGDA2HS
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE FlexibleInstances #-}
#-}
{-# FOREIGN AGDA2HS
{-
M , N := x
| λ x . M
| M N
|
| ⊥
| if_then_else
| x : M
where
variables x.
M := Bool | M -> M
-}
#-}
VarType : Set
VarType = String
-------------------------------------------------------------------------------
-- Types
-------------------------------------------------------------------------------
data Type : Set where
BoolType : Type
ArrowType : Type Type Type
{-# COMPILE AGDA2HS Type deriving (Show, Eq) #-}
-------------------------------------------------------------------------------
-- Terms
-------------------------------------------------------------------------------
data Term : Set where
Var : VarType Term
TT : Term
FF : Term
Abs : VarType Term Term
App : Term Term Term
If : Term Term Term Term
Jud : Term Type Term
{-# COMPILE AGDA2HS Term deriving (Show, Eq) #-}
-------------------------------------------------------------------------------
-- Context
-------------------------------------------------------------------------------
Context : Set
Context = List (VarType × Type)
{-# COMPILE AGDA2HS Context #-}
-------------------------------------------------------------------------------
-- | Bidirectional type-checking algorithm:
-- defined by mutual recursion:
-- type inference (a.k.a. type synthesis).
infer : Context Term Maybe Type
-- type checking.
check : Context Term Type Maybe Type
codomain : Type Maybe Type
codomain BoolType = Nothing
codomain (ArrowType a b) = Just b
helper : Context Term Maybe Type Maybe Type
helper γ x (Just (ArrowType _ tB)) = check γ x tB
helper _ _ _ = Nothing
{-# COMPILE AGDA2HS helper #-}
-- http://cdwifi.cz/#/
infer γ (Var x) = lookup x γ
infer γ TT = pure BoolType
infer γ FF = pure BoolType
infer γ (Abs x t) = pure BoolType -- TODO
infer γ (App f x) = case (infer γ f) of helper γ x
infer γ (If a t f) = pure BoolType
infer γ (Jud x m) = check γ x m
check γ x T = {!!}
{-# COMPILE AGDA2HS infer #-}
{-# COMPILE AGDA2HS check #-}