mirror of
https://github.com/anoma/juvix.git
synced 2025-01-05 22:46:08 +03:00
118 lines
2.8 KiB
Plaintext
118 lines
2.8 KiB
Plaintext
module Implicit;
|
||
|
||
infixr 9 ∘;
|
||
∘ : {A : Type} → {B : Type} → {C : Type} → (B → C) → (A → B) → A → C;
|
||
∘ f g x := f (g x);
|
||
|
||
type Nat :=
|
||
zero : Nat |
|
||
suc : Nat → Nat;
|
||
|
||
infixr 2 ×;
|
||
infixr 4 ,;
|
||
type × (A : Type) (B : Type) :=
|
||
, : A → B → A × B;
|
||
|
||
uncurry : {A : Type} → {B : Type} → {C : Type} → (A → B → C) → A × B → C;
|
||
uncurry f (a, b) := f a b;
|
||
|
||
fst : {A : Type} → {B : Type} → A × B → A;
|
||
fst (a, _) := a;
|
||
|
||
snd : {A : Type} → {B : Type} → A × B → B;
|
||
snd (_, b) := b;
|
||
|
||
swap : {A : Type} → {B : Type} → A × B → B × A;
|
||
swap (a, b) := b, a;
|
||
|
||
first : {A : Type} → {B : Type} → {A' : Type} → (A → A') → A × B → A' × B;
|
||
first f (a, b) := f a, b;
|
||
|
||
second : {A : Type} → {B : Type} → {B' : Type} → (B → B') → A × B → A × B';
|
||
second f (a, b) := a, f b;
|
||
|
||
both : {A : Type} → {B : Type} → (A → B) → A × A → B × B;
|
||
both f (a, b) := f a, f b;
|
||
|
||
type Bool :=
|
||
true : Bool
|
||
| false : Bool;
|
||
|
||
if : {A : Type} → Bool → A → A → A;
|
||
if true a _ := a;
|
||
if false _ b := b;
|
||
|
||
infixr 5 ::;
|
||
type List (A : Type) :=
|
||
nil : List A
|
||
| :: : A → List A → List A;
|
||
|
||
upToTwo : _;
|
||
upToTwo := zero :: suc zero :: suc (suc zero) :: nil;
|
||
|
||
p1 : Nat → Nat → Nat × Nat;
|
||
p1 a b := a, b ;
|
||
|
||
type Proxy (A : Type) :=
|
||
proxy : Proxy A;
|
||
|
||
t2' : {A : Type} → Proxy A;
|
||
t2' := proxy;
|
||
|
||
t2 : {A : Type} → Proxy A;
|
||
t2 := proxy;
|
||
|
||
t3 : ({A : Type} → Proxy A) → {B : Type} → Proxy B → Proxy B;
|
||
t3 _ _ := proxy;
|
||
|
||
t4 : {B : Type} → Proxy B;
|
||
t4 {_} := t3 proxy proxy;
|
||
|
||
t4' : {B : Type} → Proxy B;
|
||
t4' := t3 proxy proxy ;
|
||
|
||
map : {A : Type} → {B : Type} → (A → B) → List A → List B;
|
||
map f nil := nil;
|
||
map f (x :: xs) := f x :: map f xs;
|
||
|
||
t : {A : Type} → Proxy A;
|
||
t {_} := proxy;
|
||
|
||
t' : {A : Type} → Proxy A;
|
||
t' := proxy;
|
||
|
||
t5 : {A : Type} → Proxy A → Proxy A;
|
||
t5 p := p;
|
||
|
||
t5' : {A : Type} → Proxy A → Proxy A;
|
||
t5' proxy := proxy;
|
||
|
||
f : {A : Type} → {B : Type} → A → B → _;
|
||
f a b := a;
|
||
|
||
pairEval : {A : Type} → {B : Type} → (A → B) × A → B;
|
||
pairEval (f, x) := f x;
|
||
|
||
pairEval' : {A : Type} → {B : Type} → ({C : Type} → A → B) × A → B;
|
||
pairEval' (f, x) := f {Nat} x;
|
||
|
||
foldr : {A : Type} → {B : Type} → (A → B → B) → B → List A → B;
|
||
foldr _ z nil := z;
|
||
foldr f z (h :: hs) := f h (foldr f z hs);
|
||
|
||
foldl : {A : Type} → {B : Type} → (B → A → B) → B → List A → B;
|
||
foldl f z nil := z ;
|
||
foldl f z (h :: hs) := foldl f (f z h) hs;
|
||
|
||
filter : {A : Type} → (A → Bool) → List A → List A;
|
||
filter _ nil := nil;
|
||
filter f (h :: hs) := if (f h)
|
||
(h :: filter f hs)
|
||
(filter f hs);
|
||
|
||
partition : {A : Type} → (A → Bool) → List A → List A × List A;
|
||
partition _ nil := nil, nil;
|
||
partition f (x :: xs) := (if (f x) first second) ((::) x) (partition f xs);
|
||
|
||
end;
|