mirror of
https://github.com/anoma/juvix.git
synced 2024-12-14 17:32:00 +03:00
244 lines
6.7 KiB
Plaintext
244 lines
6.7 KiB
Plaintext
module FirstMilestone;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Module declaration
|
||
--------------------------------------------------------------------------------
|
||
|
||
module M; -- This creates a module called M.
|
||
end; -- This closes the current module in scope.
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Import definitions from existing modules
|
||
--------------------------------------------------------------------------------
|
||
|
||
import Primitives;
|
||
|
||
{- The line above will import to the local scope all the
|
||
public names qualified in the module called
|
||
Primitives.
|
||
-}
|
||
|
||
open Primitives;
|
||
|
||
{- The line above will import to the local scope all the
|
||
public names unqualified in the module called
|
||
Prelude.
|
||
-}
|
||
|
||
import Backend;
|
||
|
||
-- Additionally, one can only import unqualified names by means of
|
||
-- the keyword "using".
|
||
open Backend using { LLVM }; -- this imports to the local scope only the
|
||
-- variable called LLVM.
|
||
-- One can use ---in combination with `using`--- the keyword `hiding`
|
||
-- to avoid importing undesirable names.
|
||
|
||
import Prelude;
|
||
open Prelude hiding { Nat ; Unit ; Empty } ;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Inductive type declarations
|
||
--------------------------------------------------------------------------------
|
||
|
||
-- An inductive type named Empty without data constructors.
|
||
inductive Empty {};
|
||
|
||
-- An inductive type named Unit with only one constructor.
|
||
inductive Unit { tt : Unit; };
|
||
|
||
inductive Nat' : Type
|
||
{ zero : Nat' ;
|
||
suc : Nat' -> Nat' ;
|
||
};
|
||
|
||
-- The use of the type `Type` below is optional.
|
||
-- The following declaration is equivalent to Nat'.
|
||
|
||
inductive Nat {
|
||
zero : Nat ;
|
||
suc : Nat -> Nat ;
|
||
};
|
||
|
||
-- A term definition uses the symbol (:=) instead of the traditional
|
||
-- symbol (=). The symbol (===) is reserved for def. equality. The
|
||
-- symbols (=) and (==) are not reserved.
|
||
|
||
zero' : Nat;
|
||
zero' := zero;
|
||
|
||
|
||
-- * Inductive type declarations with paramenters.
|
||
|
||
-- The n-point type.
|
||
inductive Fin (n : Nat) {
|
||
zero : Fin zero;
|
||
suc : (n : Nat) -> Fin (suc n);
|
||
};
|
||
|
||
-- The type of sized vectors.
|
||
inductive Vec (n : Nat) (A : Type)
|
||
{
|
||
zero : Vec Nat.zero A;
|
||
succ : A -> Vec n A -> Vec (Nat.succ n) A;
|
||
};
|
||
|
||
-- * Indexed inductive type declarations.
|
||
|
||
-- A very interesting data type.
|
||
inductive Id (A : Type) (x : A) : A -> Type
|
||
{
|
||
refl : Id A x x;
|
||
};
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Unicode, whitespaces, newlines
|
||
--------------------------------------------------------------------------------
|
||
|
||
-- Unicode symbols are permitted.
|
||
ℕ : Type;
|
||
ℕ := Nat;
|
||
|
||
-- Whitespaces and newlines are optional. The following term
|
||
-- declaration is equivalent to the previous one.
|
||
ℕ'
|
||
: Type;
|
||
ℕ'
|
||
:=
|
||
Nat;
|
||
|
||
-- Again, whitespaces are optional in declarations. For example,
|
||
-- `keyword nameID { content ; x := something; };` is equivalent to
|
||
-- `keyword nameID{content;x:=something;};`. However, we must strive
|
||
-- for readability and therefore, the former expression is better.
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Axioms/definitions
|
||
--------------------------------------------------------------------------------
|
||
|
||
axiom A : Type;
|
||
axiom a : A;
|
||
axiom a' : A;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Pattern-matching
|
||
--------------------------------------------------------------------------------
|
||
|
||
f : Nat -> A;
|
||
f := \x -> match x -- \x or λ x to denote a lambda abstraction.
|
||
{
|
||
zero ↦ a ; -- case declaration uses the mapsto symbol or the normal arrow.
|
||
suc -> a' ;
|
||
};
|
||
|
||
-- We can use qualified names to disambiguate names for
|
||
-- pattern-matching. For example, imagine the case where there are
|
||
-- distinct matches of the same constructor name for different
|
||
-- inductive types (e.g. zero in Nat and Fin), AND the function type
|
||
-- signature is missing.
|
||
|
||
g : Nat -> A;
|
||
g Nat.zero := a;
|
||
g (Nat.suc t) := a';
|
||
|
||
-- For pattern-matching, the symbol `_` is the wildcard pattern as in
|
||
-- Haskell or Agda. The following function definition is equivalent to
|
||
-- the former.
|
||
|
||
g' : Nat -> A;
|
||
g' zero := a;
|
||
g' _ := a';
|
||
|
||
-- Note that the function `g` will be transformed to a function equal
|
||
-- to the function f above in the case-tree compilation phase.
|
||
|
||
-- The absurd case for patterns.
|
||
|
||
exfalso : (A : Type) -> Empty -> A;
|
||
exfalso A e := match e {};
|
||
|
||
neg : Type -> Type;
|
||
neg := A -> Empty;
|
||
|
||
-- An equivalent type for sized vectors.
|
||
|
||
Vec' : Nat -> Type -> Type;
|
||
Vec' Nat.zero A := Unit;
|
||
Vec' (Nat.suc n) A := A -> Vec' n A;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Fixity notation similarly as in Agda or Haskell.
|
||
--------------------------------------------------------------------------------
|
||
|
||
infixl 10 + ;
|
||
+ : Nat → Nat → Nat ;
|
||
+ Nat.zero m := m;
|
||
+ (Nat.suc n) m := Nat.suc (n + m) ;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Quantities for variables.
|
||
--------------------------------------------------------------------------------
|
||
|
||
-- A quantity for a variable in MiniJuvix can be either 0,1, or Any.
|
||
-- If the quantity n is not explicit, then it is Any.
|
||
|
||
-- The type of functions that uses once its input of type A to produce a number.
|
||
axiom funs : (x :1 A) -> Nat;
|
||
|
||
axiom B : (x :1 A) -> Type; -- B is a type family.
|
||
axiom em : (x :1 A) -> B;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Where
|
||
--------------------------------------------------------------------------------
|
||
|
||
a-is-a : Id A a a;
|
||
a-is-a := refl;
|
||
|
||
a-is-a' : Id A a a;
|
||
a-is-a' := helper
|
||
where {
|
||
open somemodule;
|
||
helper : Id A a a;
|
||
helper := a-is-a;
|
||
};
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Let
|
||
--------------------------------------------------------------------------------
|
||
|
||
-- `let` can appear in term and type level definitions.
|
||
|
||
a-is-a'' : Id A a a;
|
||
a-is-a'' := let { helper : Id A a a;
|
||
helper := a-is-a; }
|
||
in helper;
|
||
|
||
a-is-a''' : let { typeId : (M : Type) -> (x : M) -> Type;
|
||
typeId M x := Id M x x;
|
||
} in typeId A a;
|
||
a-is-a''' := a-is-a;
|
||
|
||
--------------------------------------------------------------------------------
|
||
-- Debugging
|
||
--------------------------------------------------------------------------------
|
||
|
||
e : Nat;
|
||
e : suc zero + suc zero;
|
||
|
||
two : Nat;
|
||
two := suc (suc zero);
|
||
|
||
e-is-two : Id Nat e two;
|
||
e-is-two := refl;
|
||
|
||
-- print out the internal representation for e without normalising it.
|
||
print e;
|
||
|
||
-- compute e and print e.
|
||
eval e;
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
end;
|