1
1
mirror of https://github.com/anoma/juvix.git synced 2025-01-07 08:08:44 +03:00
juvix/lab/Syntax/Eval.hs
2022-03-25 00:48:43 +01:00

107 lines
2.9 KiB
Haskell

{-# OPTIONS_GHC -fno-warn-missing-export-lists -fno-warn-unused-matches #-}
module MiniJuvix.Syntax.Eval where
import MiniJuvix.Prelude
import MiniJuvix.Syntax.Core
--------------------------------------------------------------------------------
-- Values and neutral terms
--------------------------------------------------------------------------------
data Value
= IsUniverse
| IsPiType Quantity BindingName Value (Value -> Value)
| IsLam BindingName (Value -> Value)
| IsTensorType Quantity BindingName Value (Value -> Value)
| IsTensorIntro Value Value
| IsUnitType
| IsUnit
| IsSumType Value Value
| IsInl Value
| IsInr Value
| IsNeutral Neutral
data Neutral
= IsFree Name
| IsApp Neutral Value
| IsTensorTypeElim
Quantity
BindingName
BindingName
BindingName
Neutral
(Value -> Value -> Value)
(Value -> Value)
| NSumElim
Quantity
BindingName
Neutral
BindingName
(Value -> Value)
BindingName
(Value -> Value)
(Value -> Value)
valueToTerm :: Value -> Term
valueToTerm v = Checkable Unit
substCheckableTerm ::
CheckableTerm -> Index -> InferableTerm -> CheckableTerm
substCheckableTerm UniverseType x m = UniverseType
substCheckableTerm (PiType q y a b) x m =
PiType
q
y
(substCheckableTerm a x m)
(substCheckableTerm b (x + 1) m)
substCheckableTerm (Lam y n) x m =
Lam y (substCheckableTerm n (x + 1) m)
substCheckableTerm (TensorType q y s t) x m =
TensorType
q
y
(substCheckableTerm s x m)
(substCheckableTerm t (x + 1) m)
substCheckableTerm (TensorIntro p1 p2) x m =
TensorIntro
(substCheckableTerm p1 x m)
(substCheckableTerm p2 x m)
substCheckableTerm UnitType x m = UnitType
substCheckableTerm Unit x m = Unit
substCheckableTerm (SumType a b) x m =
SumType (substCheckableTerm a x m) (substCheckableTerm b x m)
substCheckableTerm (Inl n) x m = Inl (substCheckableTerm n x m)
substCheckableTerm (Inr n) x m = Inr (substCheckableTerm n x m)
substCheckableTerm (Inferred n) x m =
Inferred (substInferableTerm n x m)
substInferableTerm ::
InferableTerm -> Index -> InferableTerm -> InferableTerm
substInferableTerm (Var (Bound y)) x m =
if x == y then m else Var (Bound y)
substInferableTerm (Var (Free y)) x m = Var (Free y)
substInferableTerm (Ann y a) x m =
Ann (substCheckableTerm y x m) (substCheckableTerm a x m)
substInferableTerm (App f t) x m =
App (substInferableTerm f x m) (substCheckableTerm t x m)
substInferableTerm (TensorTypeElim q z u v n a b) x m =
TensorTypeElim
q
z
u
v
(substInferableTerm n x m)
(substCheckableTerm a (x + 2) m)
(substCheckableTerm b (x + 1) m)
substInferableTerm (SumTypeElim q z esum u r1 v r2 ann) x m =
SumTypeElim
q
z
(substInferableTerm esum x m)
u
(substCheckableTerm r1 (x + 1) m)
v
(substCheckableTerm r2 (x + 1) m)
(substCheckableTerm ann (x + 1) m)