1
1
mirror of https://github.com/anoma/juvix.git synced 2024-12-15 10:03:22 +03:00
juvix/lab/Syntax/Core.agda
2022-03-25 00:48:43 +01:00

359 lines
13 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-
This module exposes the Internal syntax. A term is either checkable or
inferable. As the name indicates, a term of type CheckableTerm is a
term we must check. Similarly, a term of type InferableTerm, it is a
term we can infer.
-}
module MiniJuvix.Syntax.Core
where
--------------------------------------------------------------------------------
open import Haskell.Prelude
open import Agda.Builtin.Equality
--------------------------------------------------------------------------------
-- Haskell stuff
--------------------------------------------------------------------------------
{-# FOREIGN AGDA2HS
{-# OPTIONS_GHC -fno-warn-missing-export-lists #-}
{-# OPTIONS_GHC -fno-warn-unused-matches #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
#-}
{-# FOREIGN AGDA2HS
--------------------------------------------------------------------------------
import MiniJuvix.Prelude
--------------------------------------------------------------------------------
-- Quantity (a.k.a. Usage)
--------------------------------------------------------------------------------
#-}
data Quantity : Set where
Zero One Many : Quantity
{-# COMPILE AGDA2HS Quantity #-}
instance
QuantityEq : Eq Quantity
QuantityEq ._==_ Zero Zero = true
QuantityEq ._==_ One One = true
QuantityEq ._==_ Many Many = true
QuantityEq ._==_ _ _ = false
{-# COMPILE AGDA2HS QuantityEq #-}
compareQuantity : Quantity -> Quantity -> Ordering
compareQuantity Zero Zero = EQ
compareQuantity Zero _ = LT
compareQuantity _ Zero = GT
compareQuantity One One = EQ
compareQuantity One _ = LT
compareQuantity _ One = GT
compareQuantity Many Many = EQ
{-# COMPILE AGDA2HS compareQuantity #-}
instance
QuantityOrd : Ord Quantity
QuantityOrd .compare = compareQuantity
QuantityOrd ._<_ x y = compareQuantity x y == LT
QuantityOrd ._>_ x y = compareQuantity x y == GT
QuantityOrd ._<=_ x y = compareQuantity x y /= GT
QuantityOrd ._>=_ x y = compareQuantity x y /= LT
QuantityOrd .max x y = if compareQuantity x y == LT then y else x
QuantityOrd .min x y = if compareQuantity x y == GT then y else x
-- Using ordFromCompare didnn' work, I might need to open an issue
-- for this in agda2hs, Idk.
-- The type of usages forms an ordered semiring.
instance
QuantitySemigroup : Semigroup Quantity
QuantitySemigroup ._<>_ Zero _ = Zero
QuantitySemigroup ._<>_ One m = m
QuantitySemigroup ._<>_ Many Zero = Zero
QuantitySemigroup ._<>_ Many One = Many
QuantitySemigroup ._<>_ Many Many = Many
QuantityMon : Monoid Quantity
QuantityMon .mempty = Zero
QuantitySemiring : Semiring Quantity
QuantitySemiring .one = One
QuantitySemiring .times Zero _ = Zero
QuantitySemiring .times One m = m
QuantitySemiring .times Many Zero = Zero
QuantitySemiring .times Many One = Many
QuantitySemiring .times Many Many = Many
{-# COMPILE AGDA2HS QuantityOrd #-}
{-# COMPILE AGDA2HS QuantitySemigroup #-}
{-# COMPILE AGDA2HS QuantityMon #-}
{-# COMPILE AGDA2HS QuantitySemiring #-}
--------------------------------------------------------------------------------
-- Being relevant for a term is to have non zero quantity.
data Relevance : Set where
Relevant : Relevance -- terms to compute.
Irrelevant : Relevance -- terms to contemplate (for type formation).
{-# COMPILE AGDA2HS Relevance #-}
{-# FOREIGN AGDA2HS
deriving stock instance Eq Relevance
deriving stock instance Ord Relevance
#-}
relevancy : Quantity Relevance
relevancy Zero = Irrelevant
relevancy _ = Relevant
{-# COMPILE AGDA2HS relevancy #-}
--------------------------------------------------------------------------------
-- Variables. Relevant on the following design is the separation for a
-- variable between Bound and Free as a data constructr, due to
-- McBride and McKinna in "Functional Pearl: I am not a Number—I am a
-- Free Variable".
--------------------------------------------------------------------------------
-- DeBruijn index.
Index : Set
Index = Nat
{-# COMPILE AGDA2HS Index #-}
-- A variable can be "bound", "binding bound", or simply free. For
-- example, consider the term "x(λy.y)". The variable x is free, the
-- first y is a binding bound variable, and the latter y is bound.
BindingName : Set
BindingName = String
{-# COMPILE AGDA2HS BindingName #-}
-- A named variable can be in a local or global enviroment. In the
-- lambda term above, for example, the second occurrence of y is
-- globally bound. However, inside the the body of the lambda, the
-- variable is local free.
data Name : Set where
-- the variable has zero binding
Global : String Name
-- the variable has a binding in its scope.
Local : BindingName Index Name
{-# COMPILE AGDA2HS Name #-}
instance
nameEq : Eq Name
nameEq ._==_ (Global x) (Global y) = x == y
nameEq ._==_ (Local x1 y1) (Local x2 y2) = x1 == x2 && y1 == y2
nameEq ._==_ _ _ = false
{-# COMPILE AGDA2HS nameEq #-}
-- A variable is then a number indicating its DeBruijn index.
-- Otherwise, it is free, with an identifier as a name, or
-- inside
data Variable : Set where
Bound : Index Variable
Free : Name Variable
{-# COMPILE AGDA2HS Variable #-}
instance
variableEq : Eq Variable
variableEq ._==_ (Bound x) (Bound y) = x == y
variableEq ._==_ (Free x) (Free y) = x == y
variableEq ._==_ _ _ = false
{-# COMPILE AGDA2HS variableEq #-}
-- TODO: May I want to have Instances of Ord, Functor, Applicative, Monad?
{-# FOREIGN AGDA2HS
--------------------------------------------------------------------------------
#-}
{-
Core syntax follows the pattern design for bidirectional typing
algorithmgs in [Dunfield and Krishnaswami, 2019]. Pfenning's principle
is one of such criterion and stated as follows.
1. If the rule is an introduction rule, make the principal judgement
"checking", and
2. if the rule is an elimination rule, make the principal judgement
"synthesising".
Jargon:
- Principal connective of a rule:
- for an introduction rule is the connective that is being
introduced.
- for a elimination rule is the connective that is eliminated.
- Principal Judgement of a rule is the judgment that contains the
principal connective.
-}
{-# FOREIGN AGDA2HS
--------------------------------------------------------------------------------
-- Type-checkable terms.
--------------------------------------------------------------------------------
#-}
data CheckableTerm : Set
data InferableTerm : Set
data CheckableTerm where
{- Universe types.
See the typing rule Univ⇐.
-}
UniverseType : CheckableTerm
{- Dependent function types.
See the typing rules →F⇐ and →I⇐.
1. (Π[ x :ρ S ] P x) : U
2. (λ x. t) : Π[ x :ρ S ] P x
-}
PiType : Quantity BindingName CheckableTerm CheckableTerm CheckableTerm
Lam : BindingName CheckableTerm CheckableTerm
{- Dependent tensor product types.
See the typing rules ⊗-F-⇐, ⊗-I₀⇐, and ⊗-I₁⇐.
1. * S ⊗ T : U
2. (M , N) : S ⊗ T
-}
TensorType : Quantity BindingName CheckableTerm CheckableTerm CheckableTerm
TensorIntro : CheckableTerm CheckableTerm CheckableTerm
{- Unit types.
See the typing rule 1-F-⇐ and 1-I-⇐.
1. 𝟙 : U
2. ⋆ : 𝟙
-}
UnitType : CheckableTerm
Unit : CheckableTerm
{- Disjoint sum types.
See the typing rules
1. S + T : U
2. inl x : S + T
3. inr x : S + T
-}
SumType : CheckableTerm CheckableTerm CheckableTerm
Inl : CheckableTerm CheckableTerm
Inr : CheckableTerm CheckableTerm
-- Inferrable terms are clearly checkable, see typing rule Inf⇐.
Inferred : InferableTerm CheckableTerm
{-# COMPILE AGDA2HS CheckableTerm #-}
{-# FOREIGN AGDA2HS
--------------------------------------------------------------------------------
-- Type-inferable terms (a.k.a terms that synthesise)
--------------------------------------------------------------------------------
#-}
data InferableTerm where
-- | Variables, typing rule Var⇒.
Var : Variable InferableTerm
-- | Annotations, typing rule Ann⇒.
{- Maybe, I want to have the rules here like this:
OΓ ⊢ S ⇐0 𝕌 Γ ⊢ M ⇐0 𝕌
­────────────────────────────── Ann⇒
Γ ⊢ (M : S) ⇒ S
-}
Ann : CheckableTerm CheckableTerm InferableTerm
-- | Application (eliminator).
App : InferableTerm CheckableTerm InferableTerm
-- | Dependent Tensor product eliminator. See section 2.1.3 in Atkey 2018.
-- let z@(u, v) = M in N :^q (a ⊗ b))
TensorTypeElim
: Quantity -- q is the multiplicity of the eliminated pair.
BindingName -- z is the name of the variable binding the pair in the
-- type annotation of the result of elimination.
BindingName -- u is the name of the variable binding the first element.
BindingName -- v is the name of the variable binding the second element.
InferableTerm -- (u,v) is the eliminated pair.
CheckableTerm -- Result of the elimination.
CheckableTerm -- Type annotation of the result of elimination.
InferableTerm
-- | Sum type eliminator (a.k.a. case)
-- let (z : S + T) in (case z of {(inl u) ↦ r1; (inr v) ↦ r2} :^q T)
SumTypeElim -- Case
: Quantity -- Multiplicity of the sum contents.
BindingName -- Name of the variable binding the sum in the type
-- annotation of the result of elimination.
InferableTerm -- The eliminated sum.
BindingName -- u is the name of the variable binding the left element.
CheckableTerm -- r1 is the result of the elimination in case the sum contains
-- the left element.
BindingName -- v is the name of the variable binding the right element.
CheckableTerm -- r2 is the result of the elimination in case the sum contains
-- the right element.
CheckableTerm -- Type annotation of the result of the elimination.
InferableTerm
{-# COMPILE AGDA2HS InferableTerm #-}
{-# FOREIGN AGDA2HS
--------------------------------------------------------------------------------
-- Term Equality
--------------------------------------------------------------------------------
#-}
checkEq : CheckableTerm CheckableTerm Bool
inferEq : InferableTerm InferableTerm Bool
-- We below explicitly use `checkEq` and `inferEq` to have a more
-- reliable Haskell output using Agda2HS. The traditional way gives an
-- extraneous instance definitions.
checkEq UniverseType UniverseType = true
checkEq (PiType q₁ _ a₁ b₁) (PiType q₂ _ a₂ b₂)
= q₁ == q₂ && checkEq a₁ a₂ && checkEq b₁ b₂
checkEq (TensorType q₁ _ a₁ b₁) (TensorType q₂ _ a₂ b₂)
= q₁ == q₂ && checkEq a₁ a₂ && checkEq b₁ b₂
checkEq (TensorIntro x₁ y₁) (TensorIntro x₂ y₂) = checkEq x₁ x₂ && checkEq y₁ y₂
checkEq UnitType UnitType = true
checkEq Unit Unit = true
checkEq (SumType x₁ y₁) (SumType x₂ y₂) = checkEq x₁ x₂ && checkEq y₁ y₂
checkEq (Inl x) (Inl y) = checkEq x y
checkEq (Inr x) (Inr y) = checkEq x y
checkEq (Inferred x) (Inferred y) = inferEq x y
checkEq _ _ = false
{-# COMPILE AGDA2HS checkEq #-}
inferEq (Var x) (Var y) = x == y
inferEq (Ann x₁ y₁) (Ann x₂ y₂) = checkEq x₁ x₂ && checkEq y₁ y₂
inferEq (App x₁ y₁) (App x₂ y₂) = inferEq x₁ x₂ && checkEq y₁ y₂
inferEq (TensorTypeElim q₁ _ _ _ a₁ b₁ c₁) (TensorTypeElim q₂ _ _ _ a₂ b₂ c₂)
= q₁ == q₂ && inferEq a₁ a₂ && checkEq b₁ b₂ && checkEq c₁ c₂
inferEq (SumTypeElim q₁ _ x₁ _ a₁ _ b₁ c₁)
(SumTypeElim q₂ _ x₂ _ a₂ _ b₂ c₂)
= q₁ == q₂ && inferEq x₁ x₂ && checkEq a₁ a₂ && checkEq b₁ b₂ && checkEq c₁ c₂
inferEq _ _ = false
{-# COMPILE AGDA2HS inferEq #-}
instance
CheckableTermEq : Eq CheckableTerm
CheckableTermEq ._==_ = checkEq
{-# COMPILE AGDA2HS CheckableTermEq #-}
instance
InferableTermEq : Eq InferableTerm
InferableTermEq ._==_ = inferEq
{-# COMPILE AGDA2HS InferableTermEq #-}
data Term : Set where
Checkable : CheckableTerm Term -- terms with a type checkable.
Inferable : InferableTerm Term -- terms that which types can be inferred.
{-# COMPILE AGDA2HS Term #-}
termEq : Term Term Bool
termEq (Checkable (Inferred x)) (Inferable y) = x == y
termEq (Checkable x) (Checkable y) = x == y
termEq (Inferable x) (Checkable (Inferred y)) = x == y
termEq (Inferable x) (Inferable y) = x == y
termEq _ _ = false
{-# COMPILE AGDA2HS termEq #-}
instance
TermEq : Eq Term
TermEq ._==_ = termEq
{-# COMPILE AGDA2HS TermEq #-}
--------------------------------------------------------------------------------
-- Other Instances
--------------------------------------------------------------------------------