1
1
mirror of https://github.com/anoma/juvix.git synced 2025-01-06 06:53:33 +03:00
juvix/tests/positive/Polymorphism.juvix
janmasrovira 803d2008d9
remove ≔ from the language and replace it by := (#1563)
* remove ≔ from the language and replace it by :=

* revert accidental changes in juvix input mode

* update stdlib submodule

* rename ℕ by Nat in the tests and examples

* fix shell tests
2022-09-30 10:55:32 +10:00

105 lines
2.3 KiB
Plaintext

module Polymorphism;
inductive Pair (A : Type) (B : Type) {
mkPair : A → B → Pair A B;
};
inductive Nat {
zero : Nat;
suc : Nat → Nat;
};
inductive List (A : Type) {
nil : List A;
cons : A → List A → List A;
};
inductive Bool {
false : Bool;
true : Bool;
};
id : (A : Type) → A → A;
id _ a := a;
terminating
undefined : (A : Type) → A;
undefined A := undefined A;
add : Nat → Nat → Nat;
add zero b := b;
add (suc a) b := suc (add a b);
nil' : (E : Type) → List E;
nil' A := nil;
-- currying
nil'' : (E : Type) → List E;
nil'' E := nil;
fst : (A : Type) → (B : Type) → Pair A B → A;
fst _ _ (mkPair a b) := a;
p : Pair Bool Bool;
p := mkPair true false;
swap : (A : Type) → (B : Type) → Pair A B → Pair B A;
swap A B (mkPair a b) := mkPair b a;
curry : (A : Type) → (B : Type) → (C : Type)
→ (Pair A B → C) → A → B → C;
curry A B C f a b := f (mkPair a b) ;
ap : (A : Type) → (B : Type)
→ (A → B) → A → B;
ap A B f a := f a;
ite : (A : Type) → Bool → A → A → A;
ite _ true tt _ := tt;
ite _ false _ ff := ff;
headDef : (A : Type) → A → List A → A;
headDef _ d nil := d;
headDef A _ (cons h _) := h;
filter : (A : Type) → (A → Bool) → List A → List A;
filter A f nil := nil;
filter A f (cons x xs) := ite (List A) (f x) (cons x (filter A f xs)) (filter A f xs);
map : (A : Type) → (B : Type) →
(A → B) → List A → List B;
map A B f nil := nil ;
map A B f (cons x xs) := cons (f x) (map A B f xs);
zip : (A : Type) → (B : Type)
→ List A → List B → List (Pair A B);
zip A B nil _ := nil;
zip A B _ nil := nil;
zip A B (cons a as) (cons b bs) := nil;
zipWith : (A : Type) → (B : Type) → (C : Type)
→ (A → B → C)
→ List A → List B → List C;
zipWith A B C f nil _ := nil;
zipWith A B C f _ nil := nil;
zipWith A B C f (cons a as) (cons b bs) := cons (f a b) (zipWith A B C f as bs);
rankn : ((A : Type) → A → A) → Bool → Nat → Pair Bool Nat;
rankn f b n := mkPair (f Bool b) (f Nat n);
-- currying
trankn : Pair Bool Nat;
trankn := rankn id false zero;
l1 : List Nat;
l1 := cons zero nil;
pairEval : (A : Type) → (B : Type) → Pair (A → B) A → B;
pairEval _ _ (mkPair f x) := f x;
main : Nat;
main := headDef Nat (pairEval Nat Nat (mkPair (add zero) zero))
(zipWith Nat Nat Nat add l1 l1);
end;