{-# LANGUAGE RankNTypes #-} module Integration.Litmus where import Control.Monad (replicateM, void) import Data.List (nub, sort) import Test.DejaFu (MemType(..), defaultWay, gives') import Test.DejaFu.Conc (ConcIO) import Test.DejaFu.SCT (runSCT) import qualified Test.Tasty.Hedgehog as H import Control.Monad.Conc.Class import Common tests :: [TestTree] tests = [ let sq = [(a,b) | a <- [0..1], b <- [0..1], (a,b) /= (1,0)] tso = sq pso = [(a,b) | a <- [0..1], b <- [0..1]] in litmusTest "Loads are not reordered with other loads and stores are not reordered with other stores" intelWP21 sq tso pso , let out = [(a,b) | a <- [0..1], b <- [0..1], (a,b) /= (1,1)] in litmusTest "Stores are not reordered with older loads" intelWP22 out out out , let sq = [(a,b) | a <- [0..1], b <- [0..1], (a,b) /= (0,0)] rel = [(a,b) | a <- [0..1], b <- [0..1]] in litmusTest "Loads may be reordered with older stores to different locations" intelWP23 sq rel rel , let out = [(1,1)] in litmusTest "Loads are not reordered with older stores to the same location" intelWP24 out out out , let sq = [((1,0),(1,1)),((1,1),(1,0)),((1,1),(1,1))] rel = [((1,0),(1,0)),((1,0),(1,1)),((1,1),(1,0)),((1,1),(1,1))] in litmusTest "Intra-processor forwarding is allowed" intelWP25 sq rel rel , let out = [(0,0,0),(0,0,1),(1,0,0),(1,0,1)] in litmusTest "Stores are transitively visible" intelWP26 out out out , let out = [((0,0),(0,0)),((0,0),(0,1)),((0,0),(0,2)),((0,0),(1,1)),((0,0),(1,2)),((0,0),(2,1)),((0,0),(2,2)),((0,1),(0,0)),((0,1),(0,1)),((0,1),(0,2)),((0,1),(1,1)),((0,1),(1,2)),((0,1),(2,1)),((0,1),(2,2)),((0,2),(0,0)),((0,2),(0,1)),((0,2),(0,2)),((0,2),(1,1)),((0,2),(1,2)),((0,2),(2,1)),((0,2),(2,2)),((1,1),(0,0)),((1,1),(0,1)),((1,1),(0,2)),((1,1),(1,1)),((1,1),(1,2)),((1,1),(2,1)),((1,1),(2,2)),((1,2),(0,0)),((1,2),(0,1)),((1,2),(0,2)),((1,2),(1,1)),((1,2),(1,2)),((1,2),(2,2)),((2,1),(0,0)),((2,1),(0,1)),((2,1),(0,2)),((2,1),(1,1)),((2,1),(2,1)),((2,1),(2,2)),((2,2),(0,0)),((2,2),(0,1)),((2,2),(0,2)),((2,2),(1,1)),((2,2),(1,2)),((2,2),(2,1)),((2,2),(2,2))] in litmusTest "Total order on stores to the same location" intelWP27 out out out , let out = [((a,b),(c,d)) | a <- [0..1], b <- [0..1], c <- [0..1], d <- [0..1], ((a,b),(c,d)) /= ((1,0),(1,0))] in litmusTest "Independent Read Independent Write" intelWP28 out out out ] litmusTest :: (Eq a, Show a) => String -> ConcIO a -> [a] -> [a] -> [a] -> TestTree litmusTest name act sq tso pso = testGroup name [ testDejafuWithSettings (set lmemtype SequentialConsistency (toSettings defaultWay)) "SQ" (gives' sq) act , testDejafuWithSettings (set lmemtype TotalStoreOrder (toSettings defaultWay)) "TSO" (gives' tso) act , testDejafuWithSettings (set lmemtype PartialStoreOrder (toSettings defaultWay)) "PSO" (gives' pso) act , H.testProperty "dependency func." (prop_dep_fun act) ] -- | Run a litmus test against the three different memory models, and -- real IO, and print the results. -- -- Make sure before doing this that you have more than 1 capability, -- or the @IO@ behaviour will be severely constrained! The @IO@ test -- is run 99,999 times, but is still not guaranteed to see all the -- possible results. This is why dejafu is good! compareTest :: forall a. (Ord a, Show a) => (forall m. MonadConc m => m a) -> IO () compareTest act = do void $ putStr "DejaFu-SQ: " >> results SequentialConsistency void $ putStr "DejaFu-TSO: " >> results TotalStoreOrder void $ putStr "DejaFu-PSO: " >> results PartialStoreOrder void $ putStr "IO: " >> ioResults >>= putStrLn where results memtype = show . nub . sort . map (\(Right a,_) -> a) <$> runSCT defaultWay memtype act ioResults = show . nub . sort <$> replicateM 99999 act ------------------------------------------------------------------------------- -- The following collection of litmus tests are all from -- -- | Loads are not reordered with other loads and stores are not -- reordered with other stores. intelWP21 :: MonadConc m => m (Int, Int) intelWP21 = snd <$> litmus2 (\x y -> writeCRef x 1 >> writeCRef y 1) (\x y -> (,) <$> readCRef y <*> readCRef x) -- | Stores are not reordered with older loads. intelWP22 :: MonadConc m => m (Int, Int) intelWP22 = litmus2 (\x y -> do r1 <- readCRef x; writeCRef y 1; pure r1) (\x y -> do r2 <- readCRef y; writeCRef x 1; pure r2) -- | Loads may be reordered with older stores to different locations. intelWP23 :: MonadConc m => m (Int, Int) intelWP23 = litmus2 (\x y -> writeCRef x 1 >> readCRef y) (\x y -> writeCRef y 1 >> readCRef x) -- | Loads are not reordered with older stores to the same location. intelWP24 :: MonadConc m => m (Int, Int) intelWP24 = litmus2 (\x _ -> writeCRef x 1 >> readCRef x) (\_ y -> writeCRef y 1 >> readCRef y) -- | Intra-processor forwarding is allowed intelWP25 :: MonadConc m => m ((Int, Int), (Int, Int)) intelWP25 = litmus2 (\x y -> do writeCRef x 1; r1 <- readCRef x; r2 <- readCRef y; pure (r1, r2)) (\x y -> do writeCRef y 1; r3 <- readCRef y; r4 <- readCRef x; pure (r3, r4)) -- | Stores are transitively visible. intelWP26 :: MonadConc m => m (Int, Int, Int) intelWP26 = do x <- newCRef 0 y <- newCRef 0 j1 <- spawn (writeCRef x 1) j2 <- spawn (do r1 <- readCRef x; writeCRef x 1; pure r1) j3 <- spawn (do r2 <- readCRef y; r3 <- readCRef x; pure (r2,r3)) (\() r1 (r2,r3) -> (r1,r2,r3)) <$> readMVar j1 <*> readMVar j2 <*> readMVar j3 -- | Total order on stores to the same location. intelWP27 :: MonadConc m => m ((Int, Int), (Int, Int)) intelWP27 = do x <- newCRef 0 j1 <- spawn (writeCRef x 1) j2 <- spawn (writeCRef x 2) j3 <- spawn (do r1 <- readCRef x; r2 <- readCRef x; pure (r1, r2)) j4 <- spawn (do r3 <- readCRef x; r4 <- readCRef x; pure (r3, r4)) (\() () r12 r23 -> (r12, r23)) <$> readMVar j1 <*> readMVar j2 <*> readMVar j3 <*> readMVar j4 -- | Independent Read Independent Write. -- -- IRIW is a standard litmus test which allows in some architectures -- ((1,0),(1,0)). Intel (and TSO/PSO) forbid it. intelWP28 :: MonadConc m => m ((Int, Int), (Int, Int)) intelWP28 = do x <- newCRef 0 y <- newCRef 0 j1 <- spawn (writeCRef x 1) j2 <- spawn (writeCRef y 1) j3 <- spawn (do r1 <- readCRef x; r2 <- readCRef y; pure (r1, r2)) j4 <- spawn (do r3 <- readCRef y; r4 <- readCRef x; pure (r3, r4)) (\() () r12 r23 -> (r12, r23)) <$> readMVar j1 <*> readMVar j2 <*> readMVar j3 <*> readMVar j4 ------------------------------------------------------------------------------- -- | Create two @CRef@s, fork the two threads, and return the result. litmus2 :: MonadConc m => (CRef m Int -> CRef m Int -> m b) -> (CRef m Int -> CRef m Int -> m c) -> m (b, c) litmus2 thread1 thread2 = do x <- newCRef 0 y <- newCRef 0 j1 <- spawn (thread1 x y) j2 <- spawn (thread2 x y) (,) <$> readMVar j1 <*> readMVar j2