mirror of
https://github.com/barrucadu/dejafu.git
synced 2024-12-26 06:51:52 +03:00
146 lines
4.8 KiB
Haskell
Executable File
146 lines
4.8 KiB
Haskell
Executable File
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
|
{-# LANGUAGE Rank2Types #-}
|
|
{-# LANGUAGE TypeFamilies #-}
|
|
|
|
-- | Deterministic traced execution of concurrent computations which
|
|
-- don't do @IO@.
|
|
--
|
|
-- This works by executing the computation on a single thread, calling
|
|
-- out to the supplied scheduler after each step to determine which
|
|
-- thread runs next.
|
|
module Test.DejaFu.Deterministic
|
|
( -- * The @Conc@ Monad
|
|
Conc
|
|
, Failure(..)
|
|
, runConc
|
|
, fork
|
|
, spawn
|
|
, atomically
|
|
|
|
-- * Communication: CVars
|
|
, CVar
|
|
, newEmptyCVar
|
|
, putCVar
|
|
, tryPutCVar
|
|
, readCVar
|
|
, takeCVar
|
|
, tryTakeCVar
|
|
|
|
-- * Testing
|
|
, _concNoTest
|
|
|
|
-- * Execution traces
|
|
, Trace
|
|
, Decision(..)
|
|
, ThreadAction(..)
|
|
, CVarId
|
|
, showTrace
|
|
|
|
-- * Scheduling
|
|
, module Test.DejaFu.Deterministic.Schedule
|
|
) where
|
|
|
|
import Control.Applicative (Applicative(..), (<$>))
|
|
import Control.Monad.Cont (cont, runCont)
|
|
import Control.Monad.ST (ST, runST)
|
|
import Control.State (Wrapper(..), refST)
|
|
import Data.STRef (STRef, newSTRef)
|
|
import Test.DejaFu.Deterministic.Internal
|
|
import Test.DejaFu.Deterministic.Schedule
|
|
import Test.DejaFu.STM (STMLike, runTransactionST)
|
|
|
|
import qualified Control.Monad.Conc.Class as C
|
|
|
|
-- | The @Conc@ monad itself. This uses the same
|
|
-- universally-quantified indexing state trick as used by 'ST' and
|
|
-- 'STRef's to prevent mutable references from leaking out of the
|
|
-- monad.
|
|
newtype Conc t a = C { unC :: M (ST t) (STRef t) (STMLike t) a } deriving (Functor, Applicative, Monad)
|
|
|
|
instance C.MonadConc (Conc t) where
|
|
type CVar (Conc t) = CVar t
|
|
type STMLike (Conc t) = STMLike t (ST t) (STRef t)
|
|
|
|
fork = fork
|
|
newEmptyCVar = newEmptyCVar
|
|
putCVar = putCVar
|
|
tryPutCVar = tryPutCVar
|
|
readCVar = readCVar
|
|
takeCVar = takeCVar
|
|
tryTakeCVar = tryTakeCVar
|
|
atomically = atomically
|
|
_concNoTest = _concNoTest
|
|
|
|
fixed :: Fixed (ST t) (STRef t) (STMLike t)
|
|
fixed = Wrapper refST $ \ma -> cont (\c -> ALift $ c <$> ma)
|
|
|
|
-- | The concurrent variable type used with the 'Conc' monad. One
|
|
-- notable difference between these and 'MVar's is that 'MVar's are
|
|
-- single-wakeup, and wake up in a FIFO order. Writing to a @CVar@
|
|
-- wakes up all threads blocked on reading it, and it is up to the
|
|
-- scheduler which one runs next. Taking from a @CVar@ behaves
|
|
-- analogously.
|
|
newtype CVar t a = V { unV :: R (STRef t) a } deriving Eq
|
|
|
|
-- | Run the provided computation concurrently, returning the result.
|
|
spawn :: Conc t a -> Conc t (CVar t a)
|
|
spawn = C.spawn
|
|
|
|
-- | Block on a 'CVar' until it is full, then read from it (without
|
|
-- emptying).
|
|
readCVar :: CVar t a -> Conc t a
|
|
readCVar cvar = C $ cont $ AGet $ unV cvar
|
|
|
|
-- | Run the provided computation concurrently.
|
|
fork :: Conc t () -> Conc t ()
|
|
fork (C ma) = C $ cont $ \c -> AFork (runCont ma $ const AStop) $ c ()
|
|
|
|
-- | Run the provided 'MonadSTM' transaction atomically. If 'retry' is
|
|
-- called, it will be blocked until any of the touched 'CTVar's have
|
|
-- been written to.
|
|
atomically :: STMLike t (ST t) (STRef t) a -> Conc t a
|
|
atomically stm = C $ cont $ AAtom stm
|
|
|
|
-- | Create a new empty 'CVar'.
|
|
newEmptyCVar :: Conc t (CVar t a)
|
|
newEmptyCVar = C $ cont lifted where
|
|
lifted c = ANew $ \cvid -> c <$> newEmptyCVar' cvid
|
|
newEmptyCVar' cvid = V <$> newSTRef (cvid, Nothing)
|
|
|
|
-- | Block on a 'CVar' until it is empty, then write to it.
|
|
putCVar :: CVar t a -> a -> Conc t ()
|
|
putCVar cvar a = C $ cont $ \c -> APut (unV cvar) a $ c ()
|
|
|
|
-- | Put a value into a 'CVar' if there isn't one, without blocking.
|
|
tryPutCVar :: CVar t a -> a -> Conc t Bool
|
|
tryPutCVar cvar a = C $ cont $ ATryPut (unV cvar) a
|
|
|
|
-- | Block on a 'CVar' until it is full, then read from it (with
|
|
-- emptying).
|
|
takeCVar :: CVar t a -> Conc t a
|
|
takeCVar cvar = C $ cont $ ATake $ unV cvar
|
|
|
|
-- | Read a value from a 'CVar' if there is one, without blocking.
|
|
tryTakeCVar :: CVar t a -> Conc t (Maybe a)
|
|
tryTakeCVar cvar = C $ cont $ ATryTake $ unV cvar
|
|
|
|
-- | Run the argument in one step. If the argument fails, the whole
|
|
-- computation will fail.
|
|
_concNoTest :: Conc t a -> Conc t a
|
|
_concNoTest ma = C $ cont $ \c -> ANoTest (unC ma) c
|
|
|
|
-- | Run a concurrent computation with a given 'Scheduler' and initial
|
|
-- state, returning a failure reason on error. Also returned is the
|
|
-- final state of the scheduler, and an execution trace.
|
|
--
|
|
-- Note how the @t@ in 'Conc' is universally quantified, what this
|
|
-- means in practice is that you can't do something like this:
|
|
--
|
|
-- > runConc (\s _ (x:_) -> (x, s)) () newEmptyCVar
|
|
--
|
|
-- So 'CVar's cannot leak out of the 'Conc' computation. If this is
|
|
-- making your head hurt, check out the \"How @runST@ works\" section
|
|
-- of <https://ocharles.org.uk/blog/guest-posts/2014-12-18-rank-n-types.html>
|
|
runConc :: Scheduler s -> s -> (forall t. Conc t a) -> (Either Failure a, s, Trace)
|
|
runConc sched s ma = runST $ runFixed fixed runTransactionST sched s $ unC ma
|