dejafu/concurrency/Control/Concurrent/Classy/CRef.hs
2017-04-08 05:42:25 +01:00

121 lines
4.2 KiB
Haskell

-- |
-- Module : Control.Concurrent.Classy.CRef
-- Copyright : (c) 2016 Michael Walker
-- License : MIT
-- Maintainer : Michael Walker <mike@barrucadu.co.uk>
-- Stability : stable
-- Portability : portable
--
-- Mutable references in a concurrency monad.
--
-- __Deviations:__ There is no @Eq@ instance for @MonadConc@ the
-- @CRef@ type. Furthermore, the @mkWeakIORef@ function is not
-- provided.
module Control.Concurrent.Classy.CRef
( -- * CRefs
newCRef
, readCRef
, writeCRef
, modifyCRef
, modifyCRef'
, atomicModifyCRef
, atomicModifyCRef'
, atomicWriteCRef
-- * Memory Model
-- | In a concurrent program, @CRef@ operations may appear
-- out-of-order to another thread, depending on the memory model of
-- the underlying processor architecture. For example, on x86 (which
-- uses total store order), loads can move ahead of stores. Consider
-- this example:
--
-- > crefs :: MonadConc m => m (Bool, Bool)
-- > crefs = do
-- > r1 <- newCRef False
-- > r2 <- newCRef False
-- >
-- > x <- spawn $ writeCRef r1 True >> readCRef r2
-- > y <- spawn $ writeCRef r2 True >> readCRef r1
-- >
-- > (,) <$> readMVar x <*> readMVar y
--
-- Under a sequentially consistent memory model the possible results
-- are @(True, True)@, @(True, False)@, and @(False, True)@. Under
-- total or partial store order, @(False, False)@ is also a possible
-- result, even though there is no interleaving of the threads which
-- can lead to this.
--
-- We can see this by testing with different memory models:
--
-- > > autocheck' SequentialConsistency crefs
-- > [pass] Never Deadlocks (checked: 6)
-- > [pass] No Exceptions (checked: 6)
-- > [fail] Consistent Result (checked: 5)
-- > (False,True) S0-------S1-----S0--S2-----S0---
-- > (True,False) S0-------S1-P2-----S1----S0----
-- > (True,True) S0-------S1--P2-----S1---S0----
-- > (False,True) S0-------S1---P2-----S1--S0----
-- > (True,False) S0-------S2-----S1-----S0----
-- > ...
-- > False
--
-- > > autocheck' TotalStoreOrder crefs
-- > [pass] Never Deadlocks (checked: 303)
-- > [pass] No Exceptions (checked: 303)
-- > [fail] Consistent Result (checked: 302)
-- > (False,True) S0-------S1-----C-S0--S2-----C-S0---
-- > (True,False) S0-------S1-P2-----C-S1----S0----
-- > (True,True) S0-------S1-P2--C-S1----C-S0--S2---S0---
-- > (False,True) S0-------S1-P2--P1--C-C-S1--S0--S2---S0---
-- > (False,False) S0-------S1-P2--P1----S2---C-C-S0----
-- > ...
-- > False
--
-- Traces for non-sequentially-consistent memory models show where
-- writes to @CRef@s are /committed/, which makes a write visible to
-- all threads rather than just the one which performed the
-- write. Only 'writeCRef' is broken up into separate write and
-- commit steps, 'atomicModifyCRef' is still atomic and imposes a
-- memory barrier.
) where
import Control.Monad.Conc.Class
-- | Mutate the contents of a @CRef@.
--
-- Be warned that 'modifyCRef' does not apply the function strictly.
-- This means if the program calls 'modifyCRef' many times, but
-- seldomly uses the value, thunks will pile up in memory resulting in
-- a space leak. This is a common mistake made when using a @CRef@ as
-- a counter. For example, the following will likely produce a stack
-- overflow:
--
-- >ref <- newCRef 0
-- >replicateM_ 1000000 $ modifyCRef ref (+1)
-- >readCRef ref >>= print
--
-- To avoid this problem, use 'modifyCRef'' instead.
--
-- @since 1.0.0.0
modifyCRef :: MonadConc m => CRef m a -> (a -> a) -> m ()
modifyCRef ref f = readCRef ref >>= writeCRef ref . f
-- | Strict version of 'modifyCRef'
--
-- @since 1.0.0.0
modifyCRef' :: MonadConc m => CRef m a -> (a -> a) -> m ()
modifyCRef' ref f = do
x <- readCRef ref
writeCRef ref $! f x
-- | Strict version of 'atomicModifyCRef'. This forces both the value
-- stored in the @CRef@ as well as the value returned.
--
-- @since 1.0.0.0
atomicModifyCRef' :: MonadConc m => CRef m a -> (a -> (a,b)) -> m b
atomicModifyCRef' ref f = do
b <- atomicModifyCRef ref $ \a -> case f a of
v@(a',_) -> a' `seq` v
pure $! b