
2
FROM SETS TO CATEGORIES

In this chapter we will see some more settheoretic con
structs, but we will also introduce their categorytheoretic
counterparts in an effort to gently introduce the con
cept of a category itself.

When we are finished with that, we will try, (and almost succeed) to de
fine categories from scratch, without actually relying on set theory.

Products
In the previous chapter there were several places where needed a way to con
struct a set whose elements are composite of the elements of some other sets:
when we discussed mathematical functions, we couldn’t define � and
because we could only formulate functions that take one argument. Then,
when we introduced the primitive types in programming languages, like Char

and Number, we mentioned that most of the types that we actually use are com
posite types. So how do we construct those?

The simplest composite type, of the sets B, that contains b’s and the set
Y, that contains y’s is the Cartesian product of B and Y, that is the set of or
dered pairs that contain one element of the set Y and one element of the set
B. Or formally speaking: Y B � \	y b
^ where y ୮ Y b ୮ B (୮ means “is an
element of”).

Figure 2-1: Product parts

It is denoted B Y and it comes equipped with two functions for retriev
ing the b and the y from each 	b y
.

Figure 2-2: Product

Question: Why is this called a product? Hint: How many elements does
it have?

{% if site.distribution == ‘print’%}

Interlude - coordinate systems
The concept of the Cartesian product was first defined by the mathemati
cian and philosopher René Descartes as a basis for the Cartesian coordinate
system. Although it does not look like it, both concepts are named after him
(or after the Latinized version of his name.)

You probably know how the Cartesian coordinate system works, but an
equally interesting question, of which you probably haven’t thought about, is
how we can define it using sets and functions.

An Cartesian coordinate system consists of two perpendicular lines, situ
ated on an Euclidian plane and some kind of mapping that resembles a func
tion, connecting any point in these two lines to a number, representing the
distance between the point that is being mapped and the lines’ point of over
lap (which is mapped to the number �).

32 Chapter 2

0

Figure 2-3: Cartesian coordinates

Using this construct (as well as the concept of a Cartesian product), we
can describe not only the points on the lines, but any point on the Euclidian
plane. We do that by measuring the distance between the point and those
two lines.

0 5 6 7

5

6 6

7

Figure 2-4: Cartesian coordinates

And since the point is the main primitive of Euclidian geometry, the
coordinate system allows us to also describe all kinds of geometric figures
such as this triangle (which is described using products of products.)

From Sets to Categories 33

0 5 6 7

5

6 6

7

Figure 2-5: Cartesian coordinates

So we can say that the Cartesian coordinate system is some kind of function
like mapping between all kinds of sets of (products of) products of numbers
and geometric figures that correspond to these numbers, using which we can
derive some properties of the figures using the numbers (for example, using
the products in the example below, we can compute that the triangle that
they represent has base of � units and height of � units.

6

7

Figure 2-6: Cartesian coordinates

What’s even more interesting is that this mapping is onetoone, which
makes the two realms isomorphic (traditionally we say that the point is com
pletely described by the coordinates, which is the same thing.)

Our effort to represent Cartesian coordinates with sets is satisfactory,
but incomplete, as we still don’t know what these functionlike things that
connect points to numbers are they make intuitive sense as functions, and
that they exhibit all relevant properties (manytoone mapping, or onetoone
in this case), however, we have only covered functions as mappings between
sets and in this case, even if we can think of the coordinate system as a set
(of points and figures), geometrical figures are definitely not a set, as it has a
lot of additional things going on (or additional structure, as a category theo
rist would say.)

34 Chapter 2

So defining this mapping formally, would require us to also formalize
both geometry and algebra, and moreover to do so in a way in which they
are compatible with one another. This is some of the ambitions of category
theory and this is what we will attempt to do later in this book (even if not
for this exact example.)

But before we continue with that, let’s see some other neat uses of prod
ucts.

{%endif%}

Products as Objects
In the previous chapter we established the correspondence of various con
cepts in programming languages and set theory sets resemble types, func
tions resemble methods/subroutines. This picture is made complete with
products, that are like strippeddown classes (also called records or structs)
the sets that form the product correspond to the class’s properties (also called
members) and the functions for accessing them are like what programmers
call getter methods.

The famous example of objectoriented programming of a Person class
with name and age fields is nothing more than a product of the set of strings,
and the sets of numbers. Objects with more than two values can be expressed
as products the composites of which are themselves products.

Using Products to Define Numeric Operations
Products can also be used for expressing functions that take more than one
argument. For example, “plus” and “minus”, are functions from the set of
products of two numbers to the set of numbers. (So, � ݂ .) Of
course, we cannot draw the function itself, even partly, because it has too
much arrows and would look messy.

Actually, here it is.

From Sets to Categories 35

Figure 2-7: The plus function

Note that there are languages, such as the ones from the ML family,
where the pair data structure (also called a tuple) is a firstlevel construct,
and multiargument functions are really implemented in this way.

Defining products in terms of sets
When we said that the product is a set of ordered pairs (formally speaking
A B ଈ B A). But we didn’t define how ordered pairs formally. Note that
the criteria for order prevents us from symbolizing the pair with just a set
containing the two elements, as while some mathematical operations (such
as addition) indeed don’t care about order, others (such as subtraction) do.
And in programming, we have the ability to assign names to each member of
an object, which accomplishes the same purpose as ordering does for pairs.

36 Chapter 2

Figure 2-8: A pair

So does that mean that we have to define ordered pair as a “primitive”
type, like we defined sets in order to use them? That’s possible, but there
is another approach if we can define a construct that is isomorphic to the or
dered pair, using only sets, we can use that construct instead of them. And
mathematicians had come up with multiple ingenious ways to do that. Here
is the first one, which was discovered by Norbert Wiener in 1914. Note the
smart use of the fact that the empty set is unique.

Figure 2-9: A pair, represented by sets

From Sets to Categories 37

The next one was discovered in the same year by Felix Hausdorff. In
order to use that one, we just have to define �, and � first.

Figure 2-10: A pair, represented by sets

Discovered in 1921 Kazimierz Kuratowski, this one uses just the compo
nent of the pair.

Figure 2-11: A pair, represented by sets

38 Chapter 2

Defining products in terms of functions
In the product definitions presented in the previous section worked by zoom
ing in into the individual elements of the product and seeing what they can
be made of. I call this the lowlevel approach. This time we will try to do the
opposite be as oblivious to the contents of our sets as possible i.e. instead of
zooming in we will zoom out, and try to define the product in terms of func
tions and functional composition. Effectively we will be working at a higher
level of abstraction.

How can we define products in terms of functions? Let’s begin with an
external diagram, showing the definition of the product.

Figure 2-12: Product, external diagram

This diagram already contains the first piece of the puzzle: if we have
a set G which is the product of sets Y and B, then we should also have func
tions which give us back the elements of the product, so G ݂ Y and G ݂ B.

This definition is not complete, however, because the product of G and
B is not the only set for which such functions can be defined. For example,
a set of triples of Y B R for any random element R also qualifies. And if
there is a function from G to B then the set G itself meets our condition for
being the product, because it is connected to B and to itself. And there can
be many other such objects.

From Sets to Categories 39

Figure 2-13: Product, external diagram

So how do we set apart the true product from all those “impostor” prod
ucts? Simple by using the observation that they all can be converted to it, This
observation is true, because. The pair is nothing more than the sum of its
elements. And you can always have a function that converts a more complex
structure, to a simpler one (we saw an example of this when we covered the
functions that convert subsets to their supersets).

More formally, if we suppose that there is a set I that can serve as an im
postor product of sets B and Y i.e. that I is such that there exist two func
tions, which we will call b I ݂ B and y I ݂ Y that allow us to derive
elements B and Y from it, then there must also exist a function with the type
signature I ݂ B Y that converts the impostor from the true product. We
can be sure that this function exists because I (being an impostor) would
contain some extra information other than the information contained in the
true pair. So given we have functions b I ݂ B and y I ݂ Y that function
would be 	i
 ݂ b	i
 y	i
 for each element i I.

Therefore, we can define the product of B and Y as a set that has func
tions for deriving B and Y, but, more importantly, all other sets that have
such functions can be converted to it. The second requirement would mean
that

40 Chapter 2

Figure 2-14: Product, external diagram

In category theory, this type of property that a given object might pos
sess (participating in a structure such that all similar objects can be con
verted to/from it) is called a universal property. I don’t want to go into more
detail, as it is a bit early for that now (after all we haven’t even defined what
category theory is). One thing that I like to point out is that this definition
(as, by the way, all the previous ones) does not rule out the sets which are
isomorphic to the product when we represents things using universal prop
erties, an isomorphism is the same as equality.

Sums
We will now study a construct that is pretty similar to the product but at the
same time is very different. Similar because, like the product, it is a relation
between two sets which allows you to unite them into one, without erasing
their structure. But different as it encodes a quite different type of relation
a product encodes an and relation between two sets, while the sum encodes
an or relation.

A sum of two sets B and Y, denoted B�Y is a set that contains all elements
from the first set combined with all elements from the second one.

From Sets to Categories 41

Figure 2-15: Sum or coproduct

We can immediately see the connection with the or logical structure:
For example, because a parent is either a mother or a father of a child, the
set of all parents is the sum of the set of mothers and the set of fathers, or
P � M � F.

Defining Sums in Terms of Sets
As with the product, representing sums in terms of sets is not so straightfor
ward. This time the complication comes from the fact that when a given ob
ject is an element of both sets, then it appears in the sum twice. This is why
this type of sum of two sets is also called a disjoint union. Because of this, if
two sets can have the same element as a member, then their sum will have
that element twice which is not permitted, because a set cannot contain the
same element twice. As with the product, the solution is to put some extra
structure.

Figure 2-16: A member of a coproduct

42 Chapter 2

And as with the product, there is a lowlevel way to express a sum using
sets alone. Incidentally, we can use pairs.

Figure 2-17: A member of a coproduct, examined

But again, this distinction is only relevant only when the two sets have
common elements. If they don’t then just uniting the two sets is sufficient to
represent their sum.

Defining sums in terms of functions
As you might already suspect, the interesting part is expressing the sum of
two sets using functions. To do that we have to go back to the conceptual
part of the definition. We said that sums express an or relation between two
things.

A property of every or relation is that if something is an A that some
thing is also an A B , and same for B (The symbol means or by the way).
For example, if my hair is brown, then my hair is also either blond or brown.
This is what or means, right? This property can be expressed as a function,
two functions actually one for each set that takes part in the sum relation
(for example, if parents are either mothers or fathers, then there surely exist
functions mothers ݂ parents and fathers ݂ parents.)

From Sets to Categories 43

Figure 2-18: Coproduct, external diagram

As you might have already noticed, this definition is pretty similar to
the definition of the product from the previous section. And the similari
ties don’t end here. As with products, we have sets that can be thought of as
impostor sums ones for which these functions exist, but which also contain
additional information.

Figure 2-19: Coproduct, external diagram

All these sets express relationships which are more vague than the sim
ple sum, and therefore given such a set (an “impostor” set as we called it ear
lier), there would exist a function that would distinguish it from the true
sum. The only difference is that, unlike with the products, this time this
function goes from the sum to the impostor.

44 Chapter 2

Figure 2-20: Coproduct, external diagram

Categorical Duality
The concepts of product and sum might already look similar in a way when
we view them through their internal diagrams, but once we zoom out to the
external view, and we draw the two concepts external diagrams, this similar
ity is quickly made precise.

I use “diagrams” in plural, but actually the two concepts are captured
by one and the same diagram, the only difference between the two being that
their arrows are flipped manytoone relationships become onetomany
and the other way around.

Figure 2-21: Coproduct and product

The universal properties that define the two construct are the same as
well if we have a sum Y � B, for each impostor sum, such as Y � B � R, there
exist a trivial function Y � B ݂ Y � B � R.

And, if you remember, with product the arrows go the other way around
 the equivalent example for product would be the function $Y ×B ×R �Y ×B
$

From Sets to Categories 45

This fact uncovers a deep connection between the concepts of the prod
uct and sum, which is not otherwise apparent they are each other’s oppo
sites product is the opposite of sum and sum is the opposite of product.

In category theory, concepts that have such a relationship are said to be
dual to each other. So the the concepts of product and sum are dual. This is
why sum is known in a categorytheoretic setting as converse product, or co
product for short. This naming convention is used for all dual constructs in
category theory.

{% if site.distribution == ‘print’%}

Interlude - De Morgan duality
Now let’s look at how the concepts of product and sum from the viewpoint
of logic. We mentioned that:

• The product of two sets contains an element of the first one and one
element of the second one.

• A sum of two sets contains an element of the first one or one ele
ment of the second one.

When we view those sets as propositions, we discover the concept of
the product () corresponds exactly to the and relation in logic (denoted .)
From this viewpoint, the function Y B ݂ Y can be viewed as instance of
a logical rule of inference called conjunction elimination (also called simplifi
cation) stating that, Y B ݂ Y, for example, if your hair is partly blond and
partly brown, then it is partly blond.

By the same token, the concept of a sum (�) corresponds the or relation
in logic (denoted .) From this viewpoint, the function Y ݂ Y � B can be
viewed as instance of a logical rule of inference called disjunction introduc
tion, stating that, Y ݂ Y B for example, if your hair is blond, it is either
blond or brown.

This means, among other things, that the concepts of and and or are
also dual an idea which was put forward in the 19th century by the math
ematician Augustus De Morgan and is henceforth known as De Morgan du
ality, and which is a predecessor to the modern idea of duality in category
theory, that we examined before.

This duality is subtly encoded in the logical symbols for and and or (
and) they are nothing but stylizedversions of the diagrams of products
and coproducts.

Figure 2-22: Coproduct and product

46 Chapter 2

To understand, the connection, consider the two formulas which are
most often associated with De Morgan which are known as De Morgan laws,
although De Morgan didn’t actually discover those (they were previously
formulated, by William of Ockham (of “Ockham’s razor” fame) among other
people.મ	A B
 � મA મBમ	A B
 � મA મB

You can read the second formula as, for example, if my hair is not blond
or brown, this means that my hair is not blond and my hair is not brown, and
vice versa (the connection work both ways)

Now we will go through the formulas and we would try to show that they
are actually a simple corollary of the duality between and and or

Let’s say we want to find the statement that is opposite of “blond or
brown”.

A B
The first thing we want to do is, to replace the statements that constitute

it with their opposites, which would make the statement “not blond or not
brown”મA મB

However, this statement is clearly not the opposite of “blond or brown”(saying
that my hair is not blond or not brown does in fact allow it to be blond and
also allows for it to be brown, it just doesn’t allow it to be both of these things.)

So what have we missed? Simple although we replaced the propositions
that constitute our proposition with their opposites, we didn’t replace the
operator that connects them it is still or for both propositions. So we must
replace it with or converse. As we said earlier, and as you can see by analyz
ing this example, this operator is and So the formula becomes “not blond
and not brown”.મA મB

Saying that this formula is the opposite or “blond and brown” is the
same thing as saying that it is equivalent to it’s negation, which is precisely
what the second De Morgan formula says.મ	A B
 � મA મB

And if we “flip” this whole formula (we can do that without changing
the signs of the individual propositions, as it is valid for all propositions) we
get the first formula.મ	A B
 � મA મB

This probably provokes a lot of questions, but I won’t get into more de
tail here, as we have a whole chapter on logic. But before we get to it, we
have to see what categories are.

{% endif %}

Category Theory - brief definition
Maybe it is about time to see what a category is. We will start with a short
definition a category consists of objects (an example of which are sets) and
morphisms that go from one object to another (which can be viewed as func

From Sets to Categories 47

tions) and that should be composable. We can say a lot more about cate
gories, and even present a formal definition, but for now it is sufficient for
you to remember that sets are one example of a category and that categor
ical objects are like sets, except that we don’t see their elements. Or to put
it another way, categorytheoretic notions are captured by the external dia
grams, while strictly settheoretic notions can be captured by internal ones.

Figure 2-23: Category theory and set theory compared

When we are at the realm of sets we can view the set as a collection of
individual elements. In category theory we don’t have such notion, but we
saw how taking this notion away allows us to define concepts such as the sum
and product sets in a whole different and more general way.

Still why would we want to restrict ourselves from looking at the individ
ual elements? It is because, in this way we can relate this viewpoint to objects
other than sets. We already discussed one such object types in program
ming languages. Remember that we said that programming types (classes)
are somewhat similar to sets, and programming methods are somewhat sim
ilar to functions between sets, but they are not exactly identical? A formal
connection between the two can be made via category theory.

Category Theory Set theory Programming Languages

Category N/A N/A
Objects and Morphisms Sets and Functions Classes and methods
N/A Element Object

Category theory allows us to see the big picture when it comes to sets
and similar structures looking at the table, we cannot help but notice the
somehow weird, (but actually completely logical) symmetry (or perhaps “re
verse symmetry”) between the world as viewed through the lenses of set the
ory, and the way it is viewed through the lens of category theory:

Category Theory Set theory

Category N/A
Objects and Morphisms Sets and functions
N/A Element

48 Chapter 2

By switching to external diagrams, we lose sight of the particular (the el
ements of our sets), but we have gained the ability to see the whole universe
that we have been previously trapped in. Just as the whole realm of sets can
be thought as one category, a programming language can also be thought as
a category. The concept of a category allows us to find and analyze similari
ties between these and other structures.

NB: The word “Object” is used in both programming languages and in
category theory, but for completely different things. The equivalent a cate
gorical object is equivalent to a type or a class in programming language the
ory.

Sets VS Categories
One remark before we go: in the last paragraphs I sound as if I’m comparing
categories and sets (and rooting for categories, in order to get more copies
of my book sold) and I don’t want you to get the wrong impression that the
two concepts are somehow competing with one another. Perhaps that no
tion would be somewhat correct if category and set theory were meant to
describe concrete phenomena, in the way that the theory of relativity and the
theory of quantum mechanics in physics. Concrete theories are conceived
mainly as descriptions of the world, and as such it makes sense for them to be
connected to one another in some sort of hierarchy. Abstract theories, like
category theory and set theory, on the other hand, are more like languages
for expressing such descriptions they still can be connected, and are con
nected in more than one way, but there is no inherent hierarchy between the
two and therefore arguing over which of the two is more basic, or more gen
eral, is just a chickenandegg problem, as you would see in the next chapter.

Defining Categories (again)
All category theory books (including this one) starts by talking about set the
ory. However looking back I really don’t know why that is the case most
books that focus around a given subject don’t usually start off by introduc
ing an entirely different subject before even starting to talk about the main one,
even if the two subjects are so related.

Perhaps the setfirst approach is the best way to introduce people to cat
egories. Or perhaps using sets to introduce categories is just one of those
things that people do because everyone else does it. But one thing is for
certain we don’t need to study sets in order to understand categories. So
now I would like to start over and talk about categories as a first concept.
So pretend like it’s a new book (I wonder if I can dedicate this to a different
person.)

So. A category is a collection of objects (things) where the “things” can
be anything you want. Consider, for example, these colorful gray balls:

From Sets to Categories 49

Figure 2-24: Balls

A category consists of a collection of objects as well as some arrows con
necting some of them to one another. We call the arrows, morphisms.

Figure 2-25: A category

Wait a minute we said that all sets form a category, but at the same
time any one set can be seen as a category on its own right (just one which
has no morphisms). This is true and an example of a phenomenon that is
very characteristic of category theory one structure can be examined from
many different angles and may play many different roles, often in a recursive
fashion.

This particular analogy (a set as a category with no morphisms) is, how
ever, not very useful. Not because it’s in any way incorrect, but because cate
gory theory is all about the morphisms. If in set theory arrows are nothing but
a connection between a source and a destination, in category theory it’s the
objects that are nothing but a source and destination for the arrows that con
nect them to other objects. This is why, in the diagram above, the arrows,
and not the objects, are colored: if you ask me, the category of sets should
really be called the category of functions.

Speaking of which, note that objects in a category can be connected by
multiple arrows and that arrows having the same source and target sets does
not in any way make them equivalent (it does not actually mean that they
would produce the same value).

50 Chapter 2

Figure 2-26: Two objects connected with multiple arrows

Why that is true is pretty obvious if we go back to set theory for a sec
ond. (OK, maybe we really have to do it from time to time.) There are, for
example, an infinite number of functions that go from number to boolean,
and the fact that they have the same input type and the same output type
(or the same type signature, as we like to say) does not in any way make them
equivalent to one another.

Figure 2-27: Two sets connected with multiple functions

There are some types of categories in which only one morphism be
tween two objects is allowed (or one in each direction), but we will talk about
them later.

Composition
One of the few or maybe even the only requirement for a structure to be
called a category is that two morphisms can make a third, or in other words,
that morphisms are composable given two successive arrows with appropriate
type signature, we can draw a third one that is equivalent to the consecutive
application of the other two.

From Sets to Categories 51

Figure 2-28: Composition of morphisms

Formally, this requirement says that there should exist an operation (de
noted with the symbol r) such that for each two functions g A ݂ B and
f B ݂ C, there exists exactly one function 	f r g
 A ݂ C. Again, note that
this criteria is not met by just anymorphism with this type signature. There
is exactly onemorphism that fits these criteria, and there may be some which
don’t.

Figure 2-29: Composition of morphisms in the context of additional morphism

NB: Note (if you haven’t already) that functional composition is written
from right to left. e.g. applying g and then applying f is written f r g and not
the other way around. (You can think of it as a shortcut to f	g	a

.)

52 Chapter 2

Commuting diagrams
The diagram above, uses colors to illustrate the fact that the green mor
phism is equivalent to the other two (and not just some unrelated morphism),
but in practice this notation is a little redundant the only reason to draw
diagrams in the first place is to represent paths that are equivalent to each
other all other paths just belong in different diagrams.

Figure 2-30: Composition of morphisms - a commuting diagram

Diagrams that are like that (ones in which any two paths between two
objects are equivalent to one another) are called commutative diagrams (or
diagrams that commute). All diagrams in this book (except the wrong ones)
commute.

The law of associativity
Functional composition is special not only because you can take any two
morphisms with appropriate signatures and make a third, but because you
can do so indefinitely, i.e. given n successive arrows, each of which starts
from the object that the other one finishes, we can draw one (exactly one)
arrow that is equivalent to the consecutive application of all n arrows.

From Sets to Categories 53

Figure 2-31: Composition of morphisms with many objects

But let’s get back to the math. If we carefully review the definition above,
we can see that it can be reduced to multiple applications of the following
formula: given 4 objects and 3 morphisms between them f g h, combining h
and g and then combining the end result with f should be the same as com
bining h to the result of g and f (or simply 	h r g
 r f � h r 	g r f
).

This formula can be expressed using the following diagram, which would
only commute if the formula is true (given that all our categorytheoretic
diagrams commute, we can say, in such cases, that the formula and the dia
gram are equivalent.)

Figure 2-32: Composition of morphisms with many objects

This formula (and the diagram) is the definition of a property called
associativity. Being associative is required for functional composition to re
ally be called functional composition (and for a category to really be called
category). It is also required for our diagrams to work, as diagrams can only
represent associative structures (imagine if the diagram above does not com
mute it would be super weird.)

Associativity is not just about diagrams. For example, when we express
relations using formulas, associativity just means that brackets don’t matter
in our formulas (as evidenced by the definition 	h r g
 r f � h r 	g r f
).

And it is not only about categories either, it is a property of many other
operations on other types of objects as well e.g. if we look at numbers, we
can see that the multiplication operation is associative e.g. 	� �
 � �� 	� �
. While division is not 	�/�
/� � �/	�/�
.

This approach (composing indefinitely many things) for building stuff
is often used in programming. To see some examples, you don’t need to
look further than the way the pipe operator in Unix (|), which feeds the stan
dard output of a program with the standard input of another program, is
(ab)used. If you want to look further, note that there is a whole program

54 Chapter 2

ming paradigm based on functional composition, called “concatenative pro
gramming”.

Identity
Before the standard Arabic numerals that we use today, there were Roman
numbers. They were no good, for the simple reason that they lacked the
concept of zero a number that indicated the absence of number. Any num
ber system that lacks this simple concept is extremely limited. It is the same
in programming, where we have multiple values that indicate the absence of
a value and it is the same in category theory in order to be able to define
more stuff using morphisms in category theory, we too would want to define
zero, or what we call the “identity morphism” for each object. In short, this
is a morphism, that doesn’t do anything.

Figure 2-33: The identity morphism (but can also be any other morphism)

It’s important to mark this morphism, because there can be (let’s add
the very important (and also very boring) reminder) many morphisms that
go from one object to the same object, many of which actually do stuff. For
example, mathematics deals with a multitude of functions that have the set
of numbers as source and target, such as negate, square, addone, and are not
at all the identity morphism.

Question: What is the identity morphism in the category of sets?

From Sets to Categories 55

Isomorphism
Why do we need to define a morphism that does nothing? It’s because mor
phisms are the basic building blocks of our language, and we need this one
to be able to speak properly. For example, once we have the concept of iden
tity morphism defined, we can have a categorytheoretic definition of an
isomorphism (which is important, because the concept of an isomorphism is
very important for category theory). Like we said in the previous chapter,
an isomorphism between two objects (A and B) consists of two morphisms
 (A ݂ B. and B ݂ A) such that their compositions are equivalent to the
identity functions of the respective objects. Formally, objects A and B are
isomorphic if there exist morphisms f A ݂ B and g B ݂ A such that
f r g � idB and g r f � idA.

And here is the same thing expressed with a commuting diagram.

Figure 2-34: Isomorphism

Like the example with the law of associativity, the diagram expresses the
same (simple) fact as the formula, namely that going from the one of objects
(A and B) to the other one and then back again is the same as applying the
identity morphism i.e. doing nothing.

A summary
For future reference, let’s restate what a category is.

A category is a collection of objects (we can think of them as points) and
morphisms (or arrows) that go from one object to another, where: 1. Each ob
ject has to have the identity morphism. 2. There should be a way to compose
two morphisms with an appropriate type signature into a third one in a way
that is associative.

This is it.

56 Chapter 2

3
MONOIDS ETC

Since we are done with categories, let’s look at some
other structures that are also interesting monoids.
Like categories, monoids/groups are also abstract sys
tems consisting of set of elements and operations for
manipulating these elements, however the operations
look different than the operations we have for cate
gories. Let’s see them.

What are monoids

Monoids are simpler than categories. A monoid is defined by a collection/set
of elements (called the monoid’s underlying set, together with an monoid oper
ation a rule for combining two elements that produces a third element one
of the same kind.

Let’s take our familiar colorful balls.

Figure 3-1: Balls

We can define a monoid based on this set by defining an operation for
“combining” two balls into one. An example of such operation would be
blending the colors of the balls, as if we are mixing paint.
Figure 3-2: An operation for combining balls

You can probably think of other ways to define such an operation. This
will help you realize that there can be many ways to create a monoid from
a given set of set elements i.e. the monoid is not the set itself, it is the set
together with the operation.

Associativity
The monoid operation should, like functional composition, be associative
i.e. applying it on the same number of elements in a different order should
make no difference.

Figure 3-3: Associativity in the color mixing operation

When an operation is associative, this means we can use all kinds of alge
braic operations to any sequence of terms (or in other words to apply equa
tion reasoning), like for example we can replace any element with a set of
elements from which it is composed of, or add a term that is present at both
sides of an equation and retaining the equality of the existing terms.

Figure 3-4: Associativity in the color mixing operation

58 Chapter 3

The identity element
Actually, not any (associative) operation for combining elements makes the
balls form a monoid (it makes them form a semigroup, which is also a thing,
but that’s a separate topic). To be a monoid, a set must feature what is called
an identity element of a given operation, the concept of which you are already
familiar from both sets and categories it is an element that when combined
with any other element gives back that same element (not the identity but
the other one). Or simply x r i � x and i r x � x for any x.

In the case of our colormixing monoid the identity element is the white
ball (or perhaps a transparent one, if we have one).

Figure 3-5: The identity element of the color-mixing monoid

As you probably remember from the last chapter, functional composi
tion is also associative and it also contains an identity element, so you might
start suspecting that it forms a monoid in some way. This is indeed the case,
but with one caveat.

Basic monoids
To keep the suspense, before we discuss the relationship between monoids
and categories, we are going through see some simple examples of monoids.

Monoids from numbers
Mathematics is not only about numbers, however numbers do tend to pop
up in most of its areas, and monoids are no exception. The set of natural
numbers forms a monoid when combined with the all too familiar oper
ation of addition (or under addition as it is traditionally said.) This group is
denoted ਓ �ਔ (in general, all groups are denoted by specifying the set and
the operation, enclosed in angle brackets.)

Figure 3-6: The monoid of numbers under addition

If you see a � � � � � in your textbook you know you are either read
ing something very advanced, or very simple, although I am not really sure
which of the two applies in the present case.

Anyways, the natural numbers also form a monoid under multiplication
as well.

Monoids etc 59

Figure 3-7: The monoid of numbers under multiplication

Question: Which are the identity elements of those monoids?
Task: Go through other mathematical operations and verify that they

are monoidal.

Monoids from boolean algebra
Thinking about operations that we covered, we may remember the boolean
operations and and or. Both of them form monoids, which operate on the
set, consisting of just two values \TrueFalse^.

Task: Prove that is associative by expanding the formula 	A B
 C �
A 	B C
 with all possible values. Do the same for or.

Question: Which are the identity elements of the and and or opera
tions?

Monoid operations in terms of set theory
We now know what the monoid operation is, and we even saw some simple
examples. However, we never defined the monoid rule/operation formally
i.e. using the language of set theory with which we defined everything else.
Can we do that? Of course we can everything can be defined in terms of
sets.

We said that a monoid consists of two things a set (let’s call it A) and
a monoid operation that acts on that set. Since A is already defined in set
theory (because it is just a set), all we have to do is define the monoid opera
tion.

Defining the operation is not hard at all. Actually, we have already done
it for the operation � in chapter 2, we said that addition can be represented
in set theory as a function that accepts a product of two numbers and re
turns a number (formally � ݂).

Figure 3-8: The plus operation as a function

60 Chapter 3

Every other monoid operation can also be represented in the same way
as a function that takes a pair of elements from the monoid’s set and returns
one other monoid element.

Figure 3-9: The color-mixing operation as a function

Formally, we can define a monoid from any set A, by defining an (asso
ciative) function with type signature A A ݂ A. That’s it. Or to be precise,
that is one way to define the monoid operation. And there is another way,
which we will see next. Before that, let’s examine some more categories.

Other monoid-like objects
Monoid operations obey two laws they are associative and there is an identity
element. In some cases we come across operations that also obey other laws
that are also interesting. Imposing more (or less) rules to the way in which
(elements) objects are combined results in the definition of other monoid
like structures.

Commutative (abelian) monoids
Looking at the monoid laws and the examples we gave so far, we observe
that all of them obey one more rule (law) which we didn’t specify the order
in which the operations are applied is irrelevant to the end result.

Figure 3-10: Commutative monoid operation

Monoids etc 61

Such operations (ones for which combining a given set of elements
yields the same result no matter which one is first and which one is second)
are called commutative operations. Monoids with operations that are commu
tative are called commutative monoids.

As we said, addition is commutative as well it does not matter whether
if I have given you 1 apple and then 2 more, or if I have given you 2 first and
then 1 more.

Figure 3-11: Commutative monoid operation

All monoids that we examined so far are also commutative. We will see
some noncommutative ones later.

Groups
A group is a monoid such that for each of it’s elements, there is another ele
ment which is the so called “inverse” of the first one where the element and
its inverse cancel each other out when applied one after the other. Plain
English definitions like this make you appreciate mathematical formulas
more formally we say that for all elements x, there must exist x such that
x r x � i (where i is the identity element).

If we view monoids as a means of modeling the effect of applying a set of
(associative) actions, we use groups to model the effects of actions are also
reversible.

A nice example of a monoid that we covered that is also a group is the
set of integers under addition. The inverse of each number is its opposite
number (positive numbers’ inverse are negatives and vice versa). The above
formula, then, becomes x � 	x
 � �

The study of groups is a field that is much bigger than the theory of
monoids (and perhaps bigger than category theory itself). And one of its the
biggest branches is the study of the “symmetry groups” which we will look
into next.

Summary
But before that, just a quick note the algebraic structures that we saw can
be summarized based on the laws that define them in this table.

Semigroups Monoids

Associativity X X
Identity X
Invertability

And now for the symmetry groups.

62 Chapter 3

Symmetry groups and group classifications
An interesting kinds of groups/monoids are the groups of symmetries of ge
ometric figures. Given some geometric figure, a symmetry is an action after
which the figure is not displaced (e.g. it can fit into the same mold that it fit
before the action was applied).

We won’t use the balls this time, because in terms of symmetries they
have just one position and hence just one action the identity action (which
is it’s own reverse, by the way). So let’s take this triangle, which, for our pur
poses, is the same as any other triangle (we are not interested in the triangle
itself, but in its rotations).

Figure 3-12: A triangle

Groups of rotations
Let’s first review the group of ways in which we can rotate our triangle i.e. its
rotation group. A geometric figure can be rotated without displacement in
positions equal to the number of its sides, so for our triangle there are 3 po
sitions.

Figure 3-13: The group of rotations in a triangle

Connecting the dots (or the triangles in this case) shows us that there
are just two possible rotations that get us from any state of the triangle to
any other one a 120degree rotation (i.e. flipping the triangle one time) and a
240degree rotation (i.e. flipping it two times (or equivalently, flipping it once,
but in the opposite direction)). Adding the identity action of 0degree rota
tion makes up for 3 rotations (objects) in total.

Monoids etc 63

Figure 3-14: The group of rotations in a triangle

The rotations of a triangle form a monoid the rotations are objects (of
which the zerodegree rotation is the identity) and the monoid operation
which combines two rotations into one is just the operation of performing
the first rotation and then performing the second one.

NB: Note once again that the elements in the group are the rotations,
not the triangles themselves, actually the group has nothing to do with trian
gles, as we shall see later.

Cyclic groups/monoids
The diagram that enumerates all the rotations of a more complex geometri
cal figure looks quite messy at first.

Figure 3-15: The group of rotations in a more complex figure

But it gets much simpler to grasp if we notice the following: although
our group has many rotations, and there are more still for figures with more
sides (if I am not mistaken, the number of rotations is equal to the number
of the sides), all those rotations can be reduced to the repetitive application of just
one rotation, (for example, the 120degree rotation for triangles and the 45
degree rotation for octagons). Let’s make up a symbol for this rotation.

Figure 3-16: The group of rotations in a triangle

Symmetry groups that have such “main” rotation, and, in general, groups
and monoids that have an object that is capable of generating all other ob

64 Chapter 3

jects by it’s repeated application, are called cyclic groups. And such rotation
are called the group’s generator.

All rotation groups are cyclic groups. Another example of a cyclic groups
is, yes, the natural numbers under addition. Here we can use �� or � as
generators.

Figure 3-17: The group of numbers under addition

Wait, how can this be a cyclic group when there are no cycles? This is
because the integers are an infinite cyclic group.

A numberbased example of a finite cyclic group is the group of natural
numbers under modular arithmetic (sometimes called “clock arithmetic”).
Modular arithmetic’s operation is based on a number called the modulus
(let’s take �� for example). In it, each number is mapped to the remainder of
the integer addition of that number and the modulus.

For example: � 	mod ��
 � � (because �/�� � � with � remainder) �	mod ��
 � � etc.
But �� 	mod ��
 � � (as ��/�� � � with � remainder) �� 	mod ��
 � �,�� 	mod ��
 � � etc.
In effect numbers “wrap around”, forming a group with as many ele

ments as it the modulus number. Like for example a group representation
of modular arithmetic with modulus � has 3 elements.

Figure 3-18: The group of numbers under addition

All cyclic groups that have the same number of elements (or that are of
the same order) are isomorphic to each other (careful readers might notice
that we haven’t yet defined what a group isomorphisms are. Even more care
ful readers might already have an idea about what it is.)

Monoids etc 65

For example, the group of rotations of the triangle is isomorphic to the
natural numbers under the addition with modulo �.

Figure 3-19: The group of numbers under addition

All cyclic groups are commutative (or “abelian” as they are also called).
Task: Show that there are no other groups with 3 objects, other than Zϯ.
There are abelian groups that are not cyclic, but, as we shall see below,

the concepts of cyclic groups and of abelian groups are deeply related.

Group isomorphisms
We already mentioned group isomorphisms, but we didn’t define what they
are. Let’s do that now an isomorphism between two groups is an isomor
phism (f) between their respective sets of elements, such that for any a and
b we have f	a r b
 � f	a
 r f	b
. Visually, the diagrams of isomorphic groups
have the same structure.

Figure 3-20: Group isomorphism between different representations of S3

As in category theory, in group theory isomorphic groups they consid
ered instances of one and the same group. For example the one above is
called Zϯ.
Finite groups
Like with sets, the concept of an isomorphism in group theory allows us to
identify common finite groups.

The smallest group is just the trivial group Zφ that has just one element.

66 Chapter 3

0
0

Figure 3-21: The smallest group

The smallest nontrivial group is the group Zϵ that has two elements.

Figure 3-22: The smallest non-trivial group

Zϵ is also known as the boolean group, due to the fact that it is isomorphic
to the TrueFalse set.

Like Zϯ, Zφ and Zϵ are cyclic.

Group/monoid products
We already saw a lot of abelian groups that are also cyclic, but we didn’t see
any abelian groups that are not cyclic. So let’s examine what those look like.
This time, instead of looking into individual examples, we will present a gen
eral way for producing abelian noncyclic groups from cyclic ones it is by
uniting them by using group product.

Given any two groups, we can combine them to create a third group,
comprised of all possible pairs of elements from the two groups and of the
sum of all their actions.

Monoids etc 67

Let’s see how the product looks like take the following two groups (which,
having just two elements and one operation, are both isomorphic to Z�). To
make it easier to imagine them, we can think of the first one as based on the
vertical reflection of a figure and the second, just the horizontal reflection.

V
V

H
H

Figure 3-23: Two trivial groups

We get set of elements of the new group by taking the Cartesian product
of the set of the elements of the first group and the set of the element of the
second one.

Figure 3-24: Two trivial groups

And the actions of a product group are comprised of the actions of the
first group, combined with the actions of the second one, where each action
is applied only on the element that is a member of its corresponding group,
leaving the other element unchanged.

V

V

HH

V

V

HH

Figure 3-25: Klein four

The product of the two groups we presented is called the Klein four
group and it is the simplest abelian noncyclic group.

Another way to present the Kleinfour group is the group of symmetries of
a nonsquare rectangle.

68 Chapter 3

V

V

HH

V

V

HH

Figure 3-26: Klein four

Task: Show that the two representations are isomorphic.
Like all product groups, the Kleinfour group is noncyclic (because there

are not one, but two generators) vertical and horizontal spin. It is, however,
still abelian, because the ordering of the actions still does not matter for the
end results. Actually, the Kleinfour group is the smallest noncyclic group.

In fact, products groups (except the ones that feature the trivial group)
are always noncyclic, because even if the two groups that comprise the prod
uct it are cyclic, and have just 1 generator each, their product would have 2
generators.

Product groups are still abelian, provided that the groups that form
them are abelian we can see that this is true by noticing that, although the
generators are more than one, each of them acts only on it’s own part of the
group, so they don’t interfere with each other in any way.

Fundamental theorem of Finite Abelian groups
Products provide one way to create noncyclic abelian groups by creating
a product of two or more cyclic groups. The fundamental theory of finite
abelian groups is a result that tells us that this is the only way to produce non
cyclic abelian groups i.e.

All abelian groups are either cyclic or products of cyclic groups.

We can use this law to gain intuitive understanding of the what abelian
groups are, but also to test whether a given group can be broken down to a
product of more elementary groups.

{% if site.distribution == ‘print’ %}

Color-mixing monoid as a product
To see how can we use this theorem, let’s revisit our color mixing monoid
that we saw earlier.

Monoids etc 69

Figure 3-27: color-mixing group

As there doesn’t exist a color that, when mixed with itself, can produce
all other colors, the colormixing monoid is not cyclic. However, the color
mixing monoid is abelian. So according to the theorem of finite abelian
groups (which is valid for monoids as well), the colormixing monoid must
be (isomorphic to) a product.

And it is not hard to find the monoids that form it although there
isn’t one color that can produce all other colors, there are three colors that
can do that the prime colors. This observation leads us to the conclusion
that the colormixing monoid, can be represented as the product of three
monoids, corresponding to the three primary colors.

Figure 3-28: color-mixing group as a product

You can think of each color monoid as a boolean monoid, having just
two states (colored and notcolored).

Figure 3-29: Cyclic groups, forming the color-mixing group

Or alternatively, you can view it as having multiple states, representing
the different levels of shading.

Figure 3-30: Color-shading cyclic group

In both cases the monoid would be cyclic.
{%endif%}

Groups/monoid of rotations and reflections
Now, let’s finally examine a noncommutative group the group of rotations
and reflections of a given geometrical figure. It is the same as the last one,
but here besides the rotation action that we already saw (and its composite
actions), we have the action of flipping the figure vertically, an operation
which results in its mirror image:

70 Chapter 3

Figure 3-31: Reflection of a triangle

Those two operations and their composite results in a group called Dih�
that is not abelian (and is furthermore the smallest nonabelian group).

Figure 3-32: The group of rotations and reflections in a triangle

Task: Prove that this group is indeed not abelian.
Question: Besides having two main actions, what is the defining factor

that makes this and any other group nonabelian?

Groups/monoids categorically
We began by defining a monoid as a set of composable elements. Then we
saw that for some groups, like the groups of symmetries and rotations, those
elements can be viewed as actions. And this is actually true for all other groups
as well, e.g. the redball in our colorblending monoid can be seen as the ac
tion of addingthecolorred to the mix, the number � in the monoid of addition
can be seen as the operation �� etc. This observation leads to a categorical
view of the theory of groups and monoids.

Currying
When we defined monoids, we saw that their operations are twoargument
functions. And we introduced a way for representing such functions using
set theory by uniting the two arguments into one using products. i.e. we
showed that a function that accepts two arguments (say A and B) and maps
them into some result (C), can be thought as a mapping from the product of
the sets of two arguments to the result. So A B ݂ C.

However, this is not the only way to represent multiargument function
settheoretically there is another, equally interesting way, that doesn’t rely
on any data structures, but only on functions: that way is to have a function
that maps the first of the two arguments (i.e. from A) to another function that
maps the second argument to the final result (i.e. B ݂ C.) So A ݂ B ݂ C.

The practice of transforming a function that takes a pair of objects to a
function that takes just one object and returns a function that takes another

Monoids etc 71

one is called currying. It is achieved by a higherorder function. Here is how
such a function might be implemented.

const curry = <A, B, C> (f:(a:A, b:B) => C) => (a:A) => (b:B) => f(a, b)

And equally important is the opposite function, which maps a curried
function to a multiargument one, which is known as uncurry.

const uncurry = <A, B, C> (f:(a:A) => (b:B) => C) => (a:A, b:B) => f(a)(b)

There is a lot to say about these two functions, starting from the fact
that its existence gives rise to an interesting relationship between the con
cept of a product and the concept of a morphism in category theory, called the
adjunction. But we will cover this later. For now we are interested in the fact
the two function representations are isomorphic, formally AB ݂ C அ A ݂
B ݂ C.

By the way, this isomorphism can be represented in terms of program
ming as well. It is equivalent to the statement that the following function
always returns true for any arguments,

(...args) => uncurry(curry(f(...args)) === f(...args)

This is one part of the isomorphism, the other part is the equivalent
function for curried functions.

Task: Write the other part of the isomorphism.

Monoid elements as functions/permutations
Let’s take a step back and examine the groups/monoids that we covered so
far in the light of what we learned. We started off by representing group op
eration as a function from pairs. For example, the operation of a symmetric
group,(let’s take Zϯ as an example) are actions that converts two rotations to
another rotation.

Figure 3-33: The group of rotations in a triangle - group notation

Using currying, we can represent the elements of a given group/monoid
as functions by uniting them to the group operation, and the group opera
tion itself as functional composition. For example, the 3 elements of Zϯ can
be seen as 3 bijective (invertable) functions from a set of 3 elements to itself
(in grouptheoretic context, these kinds of functions are called permutations,
by the way.)

72 Chapter 3

Figure 3-34: The group of rotations in a triangle - set notation

We can do the same for the addition monoid numbers can be seen not
as quantities (as in two apples, two oranges etc.), but as operations, (e.g. as the
action of adding two to a given quantity).

Formally, the operation of the addition monoid, that we saw above has
the following type signature.� ݂

Because of the isomorphism we presented above, this function is equiva
lent to the following function.� ݂ 	 ݂

When we apply an element of the monoid to that function (say �), the
result is the function �� that adds 2 to a given number.�� ݂

And because the monoid operation is always a given in the context of a
given monoid, we can view the element � and the function �� as equivalent
in the context of the monoid.� அ ��

In other words, in addition to representing the monoid elements in the
set as objects that are combined using a function, we can represent them as
functions themselves.

Monoid operations as functional composition
The functions that represent the monoid elements have the same set as
source and target, or same signature, as we say (formally, they are of the type

Monoids etc 73

A ݂ A for some A). Because of that, they all can be composed with one
another, using functional composition, resulting in functions that also has the
same signature.

120°240°

0°

Figure 3-35: The group of rotations in a triangle - set notation

And the same is valid for the addition monoid number functions can
be combined using functional composition.�� r �� அ ��

So, basically the functions that represent the elements of a monoid also
form a monoid, under the operation of functional composition (and the
functions that represent the elements that form a group also form a group).

Question: Which are the identity elements of function groups?
Task: Show that the functions representing inverse group elements are

also inverse.

Cayley’s theorem
We saw how using currying we can represent the elements of any group as
permutations that, also form a monoid. Cayley’s theorem tells us that those
two groups are isomorphic:

Any group is isomorphic to a permutation group.

Formally, if we use Perm to denote the permutation group then Perm	A
 அ
A for any A.

120°240°

0°

Figure 3-36: The group of rotations in a triangle - set notation and normal notation

Or in other words, representing the elements of a group as permuta
tions actually yields a representation of the monoid itself (sometimes called
it’s standard representation.)

74 Chapter 3

Cayley’s theorem may not seem very impressive, but that only shows
how influential it has been as a result.

{% if site.distribution == ‘print’ %}

Interlude: Symmetric groups
The most important thing that you have to know about the symmetric groups
is that they are not the same thing as symmetry groups. Once we have that out of
the way, we can understand what they actually are: given a natural number
n, the symmetric group of n, denoted Sn (symmetric group of degree n) is
the group of all possible permutations of a set with n elements. The number
of the elements of such groups is equal to are ���...n or n� (nfactorial.)

So, for example the group Sφ of permutations of the oneelement set
has just 1 element (because a 1element set has no other functions to itself
other than the identity function.

Figure 3-37: The S1 symmetric group

The group Sϵ, has � � � � elements (by the way, the colors are there
to give you some intuition as to why the number of permutations of a n
element set is n�.)

Figure 3-38: The S2 symmetric group

Monoids etc 75

And with Sϯ we are already feeling the power of exponential (and even
faster than exponential!) growth of the factorial function it has ��� � �
elements.

Figure 3-39: The S3 symmetric group

Each symmetric group Sn contains all groups of order n this is so, be
cause (as we saw in the prev section) every group with n elements is isomor
phic to a set of permutations on the set of n elements and the group Sn con
tains all such permutations. In particular, Sφ is isomorphic to Zφ (the trivial
group), Sϵ is isomorphic to Zϵ (the boolean group). And the top three permu
tations of Sϯ are isomorphic to the group Zϯ.

0°
120° 240°

Figure 3-40: The S3 symmetric group

Based on this insight, can state Cayley’s theorem in terms of symmetric
groups in the following way:

All groups are isomorphic to subgroups of symmetric groups.

Task: Show how the two are equivalent.
Fun fact: the study of group theory actually started by examining sym

metric groups, so this theorem was actually a prerequisite for the emergence
of the normal definition of groups that we all know and love (OK, at least
I love it) it provided a proof that the notion described by this definition is
equivalent to the already existing notion of symmetric groups.

{% endif %}

Monoids as categories
We saw that converting the monoid’s elements to actions/functions yields
an accurate representation of the monoid in terms of sets and functions.

76 Chapter 3

Figure 3-41: The group of rotations in a triangle - set notation and normal notation

However, it seems that the set part of the structure in this representa
tion is kinda redundant you have the same set everywhere so, it would do
it good if we can simplify it. And we can do that by depicting it as an exter
nal (categorical) diagram.

Figure 3-42: The group of rotations in a triangle - categorical notation

But wait, if the monoids’ underlying sets correspond to objects in category
theory, then the corresponding category would have just one object. And
so the correct representation would involve just one point from which all
arrows come and to which they go.

Monoids etc 77

Figure 3-43: The group of rotations in a triangle - categorical notation

The only difference between different monoids would be the number of
morphisms that they have and the relationship between them.

The intuition behind this representation from a categorytheoretic stand
point is encompassed by the law of closure that monoid and group opera
tions have and that categories lack it is the law stating that applying the op
eration (functional composition) on any two objects always yields the same
object, e.g. no matter how do you flip a triangle, you’d still get a triangle.

Categories Monoids

Associativity X X
Identity X X
Invertability
Closure X

When we view a monoid as a category, this law says that all morphisms
in the category should be from one object to itself a monoid, any monoid,
can be seen as a category with one object.

Let’s elaborate on this thought by reviewing the definition of a category
from chapter 2.

A category is a collection of objects (we can think of them as points)
and morphisms (arrows) that go from one object to another, where:
1. Each object has to have the identity morphism. 2. There should
be a way to compose two morphisms with an appropriate type
signature into a third one in a way that is associative.

Aside from the littleconfusing fact that monoid objects are morphisms
when viewed categorically, this describes exactly what monoids are.

78 Chapter 3

Categories have an identity morphism for each object, so for categories
with just one object, there should also be exactly one identity morphism.
And monoids do have an identity object, which when viewed categorically
corresponds to that identity morphism.

Categories provide a way to compose two morphisms with an appro
priate type signature, and for categories with one object this means that all
morphisms should be composable with one another. And the monoid operation
does exactly that given any two objects (or two morphisms, if we use the
categorical terminology), it creates a third.

Philosophically, defining a monoid as a oneobject category means cor
responds to the view of monoids as a model of how a set of (associative) ac
tions that are performed on a given object alter it’s state. Provided that the
object’s state is determined solely by the actions that are performed on it, we
can leave it out of the equation and concentrate on how the actions are com
bined. And as per usual, the actions (and elements) can be anything, from
mixing colors in paint, or adding a quantities to a given set of things etc.

Group/monoid presentations
When we view cyclic groups/monoids as categories, we would see that they
correspond to categories that (besides having just one object) also have just
one morphism (which, as we said, is called a generator) along with the mor
phisms that are created when this morphism is composed with itself. In fact
the infinite cyclic monoid (which is isomorphic to the natural numbers), can
be completely described by this simple definition.

Figure 3-44: Presentation of an infinite cyclic monoid

This is so, because applying the generator again and again yields all el
ements of the infinite cyclic group. Specifically, if we view the generator as
the action �� then we get the natural numbers.

Monoids etc 79

Figure 3-45: Presentation of an infinite cyclic monoid

Finite cyclic groups/monoids are the same, except that their definition
contains an additional law, stating that that once you compose the genera
tor with itself n number of times, you get identity morphism. For the cyclic
group Zϯ (which can be visualized as the group of triangle rotations) this
law states that composing the generator with itself � times yields the identity
morphism.

Figure 3-46: Presentation of a finite cyclic monoid

Composing the group generator with itself, and then applying the law,
yields the three morphisms of Zϯ.

Figure 3-47: Presentation of a finite cyclic monoid

We can represent product groups this way too. Let’s take Klein four
group as an example, The Klein fourgroup has two generators that it inher
its from the groups that form it (which we viewed like vertical and horizontal
rotation of a nonsquare rectangle) each of which comes with one law.

Figure 3-48: Presentation of Klein four

To make the representation complete, we add the law for combining the
two generators.

80 Chapter 3

Figure 3-49: Presentation of Klein four - third law

And then, if we start applying the two generators and follow the laws, we
get the four elements.

Figure 3-50: The elements of Klein four

The set of generators and laws that defines a given group is called the
presentation of a group. Every group has a presentation.

Free monoids
We saw how picking a different selection of laws gives rise to different types
of monoid. But what monoids would we get if we pick no laws at all? These
monoids (we get a different one depending on the set we picked) are called
a free monoids (the word “free” is used in the sense that once you have the
set, you can upgrade it to a monoid for free (i.e. without having to define
anything else.)

If you revisit the previous section you will notice that we already saw one
such monoid. The free monoid with just one generator is isomorphic to the
monoid of integers.

Monoids etc 81

Figure 3-51: The free monoid with one generator

We can make a free monoid from the set of colorful balls the monoid’s
elements would be sequences of all possible combinations of the balls.

Figure 3-52: The free monoid with the set of balls as a generators

The free monoid is a special one each element of the free monoid over
a given set, can be converted to a corresponding element in any any other
monoid that uses the same set of generators by just applying the monoid’s
laws. For example, here is how the elements above would look like if we ap
ply the laws of the colormixing monoid.

Figure 3-53: Converting the elements of the free monoid to the elements of the color-
mixing monoid

Task: Write up the laws of the colormixing monoid.
If we put out programmers’ hat, we will see that the type of the free

monoid under the set of generators T (which we can denote as FreeMonoid<T>)
is isomorphic to the type List<T> (or Array<T>, if you prefer) and that the intu
ition behind the special property that we described above is actually very
simple: keeping objects in a list allows you to convert them to any other
structure i.e. when we want to perform some manipulation on a bunch of
objects, but we don’t know exactly what this manipulation is, we just keep a
list of those objects until it’s time to do it.

While the intuition behind free monoids seems simple enough, the for
mal definition is not our cup of tea… yet, simply because we have to cover
more stuff.

82 Chapter 3

We understand that, being the most general of all monoids for a given
set of generators, a free monoid can be converted to all of them. i.e. there
exist a function from it to all of them. But what kind of function would that
be?

Plus, what about other monoids that also can have this property (that
they are connected to any other monoids) Simple they are the free monoid
with some extra structure, so we can filter them out by using an universal
property.

But, what would this property be, (and what the hell are universal prop
erties anyways?), tune in after a few chapters to find out.

Monoids etc 83

	Foreword
	Acknowledgments
	1Sets
	What is an Abstract Theory
	Sets
	Subsets
	Singleton Sets
	The Empty set

	Functions
	Functions in everyday life
	The Identity Function
	Functions and Subsets
	Functions and the Empty Set
	Functions and Singleton Sets

	Sets and Functions with numbers
	Number sets
	Number functions

	Sets and Functions in Programming
	Sets and types
	Functions and methods/subroutines
	Purely-functional programming languages

	Interlude - type theory
	Russell's paradox
	From set theory to type theory
	Types
	Values
	Conclusion

	Functional Composition
	The Power of Composition
	Representing Composition with Commutative Diagrams

	Isomorphism
	Isomorphism and identity
	Isomorphism and composition
	Composing isomorphisms
	Isomorphisms Between Singleton Sets

	Equivalence relations and isomorphisms
	Equivalence relations
	Reflexivity
	Transitivity
	Symmetry
	Isomorphisms as equivalence relations

	Interlude - numbers as isomorphisms

	2From Sets to Categories
	Products
	Interlude - coordinate systems
	Products as Objects
	Using Products to Define Numeric Operations
	Defining products in terms of sets
	Defining products in terms of functions

	Sums
	Defining Sums in Terms of Sets
	Defining sums in terms of functions

	Categorical Duality
	Interlude - De Morgan duality
	Category Theory - brief definition
	Sets VS Categories

	Defining Categories (again)
	Composition
	Commuting diagrams
	The law of associativity
	Identity
	Isomorphism
	A summary

	3Monoids etc
	What are monoids
	Associativity
	The identity element

	Basic monoids
	Monoids from numbers
	Monoids from boolean algebra

	Monoid operations in terms of set theory
	Other monoid-like objects
	Commutative (abelian) monoids
	Groups
	Summary

	Symmetry groups and group classifications
	Groups of rotations
	Cyclic groups/monoids
	Group isomorphisms
	Finite groups
	Group/monoid products
	Fundamental theorem of Finite Abelian groups
	Color-mixing monoid as a product
	Groups/monoid of rotations and reflections

	Groups/monoids categorically
	Currying
	Monoid elements as functions/permutations
	Monoid operations as functional composition
	Cayley's theorem
	Interlude: Symmetric groups
	Monoids as categories
	Group/monoid presentations
	Free monoids

	4Orders
	Linear order
	Reflexivity
	Transitivity
	Antisymmetry
	Totality
	The order of natural numbers

	Partial order
	Chains
	Greatest and least objects
	Joins
	Meets
	Hasse diagrams
	Color order
	Numbers by division
	Inclusion order
	Order isomorphisms
	Birkhoff's representation theorem

	Lattices
	Bounded lattices
	Interlude - semilattices and trees

	Preorder
	Preorders and equivalence relations
	Maps as preorders
	State machines as preorders

	Orders as categories
	Products and sums

	5Logic
	What is logic
	Logic and mathematics
	Primary propositions
	Composing propositions
	The equivalence of primary and composite propositions
	Modus ponens
	Tautologies
	Axiom schemas/Rules of inference
	Logical systems
	Conclusion

	Classical logic. The truth-functional interpretation
	The negation operation
	Interlude: Proving results by truth tables
	The and and or operations
	The implies operation
	Proving results by axioms/rules of inference

	Intuitionistic logic. The BHK interpretation
	The and and or operations
	The implies operation
	The negation operation
	Classical VS intuitionistic logic

	Logics as categories
	The Curry-Howard isomorphism
	Cartesian closed categories
	Logics as orders
	The and and or operations
	The negation operation
	The implies operation

	Functors
	Categories we saw so far
	The category of sets
	Special types of categories
	Other categories
	Finite categories

	Isomorphisms
	What are functors
	Object mapping
	Morphism mapping
	Functor laws

	Diagrams
	Object mapping
	Morphism mapping
	Functor laws
	Constant functor

	Functors in programming
	Type mapping
	Function mapping
	Functor laws

	Endofunctors
	Identity functor

	Homomorphism functors
	Functors in monoids
	Object mapping
	Morphism mapping
	Functor laws

	Functors in orders
	Object mapping
	Morphism mapping
	Functor laws

	The category of small categories
	Categories all the way down

	Free and forgetful functors
	Forgetful functors
	Object mapping
	Morphism mapping
	Functor laws

	Free functors
	Object mapping
	Morphism mapping

	Adjoint functors

	AVivamus commodo eros eleifend dui
	Bibliography
	Index

