streamly/benchmark/LinearOps.hs
Harendra Kumar bf4e5d89ec Add mixed ops x 2 and iterated benchmarks to base
Also, fix comparative graph generation, titles etc.
2018-11-06 03:12:08 +05:30

393 lines
12 KiB
Haskell

-- |
-- Module : BenchmarkOps
-- Copyright : (c) 2018 Harendra Kumar
--
-- License : MIT
-- Maintainer : harendra.kumar@gmail.com
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
module LinearOps where
import Control.Monad (when)
import Data.Maybe (fromJust)
import Prelude
(Monad, Int, (+), ($), (.), return, fmap, even, (>), (<=), (==), (<=),
subtract, undefined, Maybe(..), odd, Bool, not, (>>=), mapM_, curry,
maxBound, div)
import qualified Prelude as P
import qualified Streamly as S
import qualified Streamly.Prelude as S
value, maxValue :: Int
#ifdef LINEAR_ASYNC
value = 10000
#else
value = 100000
#endif
maxValue = value + 1
-------------------------------------------------------------------------------
-- Benchmark ops
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-- Stream generation and elimination
-------------------------------------------------------------------------------
type Stream m a = S.SerialT m a
{-# INLINE source #-}
source :: (S.MonadAsync m, S.IsStream t) => Int -> t m Int
source n = S.serially $ sourceUnfoldrM n
-- source n = S.serially $ sourceFromList n
{-# INLINE sourceFromList #-}
sourceFromList :: (Monad m, S.IsStream t) => Int -> t m Int
sourceFromList n = S.fromList [n..n+value]
{-# INLINE sourceFromListM #-}
sourceFromListM :: (S.MonadAsync m, S.IsStream t) => Int -> t m Int
sourceFromListM n = S.fromListM (Prelude.fmap return [n..n+value])
{-# INLINE sourceFromFoldable #-}
sourceFromFoldable :: S.IsStream t => Int -> t m Int
sourceFromFoldable n = S.fromFoldable [n..n+value]
{-# INLINE sourceFromFoldableM #-}
sourceFromFoldableM :: (S.IsStream t, S.MonadAsync m) => Int -> t m Int
sourceFromFoldableM n = S.fromFoldableM (Prelude.fmap return [n..n+value])
{-# INLINE sourceFoldMapWith #-}
sourceFoldMapWith :: (S.IsStream t, S.Semigroup (t m Int))
=> Int -> t m Int
sourceFoldMapWith n = S.foldMapWith (S.<>) S.yield [n..n+value]
{-# INLINE sourceFoldMapWithM #-}
sourceFoldMapWithM :: (S.IsStream t, Monad m, S.Semigroup (t m Int))
=> Int -> t m Int
sourceFoldMapWithM n = S.foldMapWith (S.<>) (S.yieldM . return) [n..n+value]
{-# INLINE sourceUnfoldr #-}
sourceUnfoldr :: (Monad m, S.IsStream t) => Int -> t m Int
sourceUnfoldr n = S.unfoldr step n
where
step cnt =
if cnt > n + value
then Nothing
else Just (cnt, cnt + 1)
{-# INLINE sourceUnfoldrM #-}
sourceUnfoldrM :: (S.IsStream t, S.MonadAsync m) => Int -> t m Int
sourceUnfoldrM n = S.unfoldrM step n
where
step cnt =
if cnt > n + value
then return Nothing
else return (Just (cnt, cnt + 1))
{-# INLINE sourceUnfoldrMN #-}
sourceUnfoldrMN :: (S.IsStream t, S.MonadAsync m) => Int -> Int -> t m Int
sourceUnfoldrMN m n = S.unfoldrM step n
where
step cnt =
if cnt > n + m
then return Nothing
else return (Just (cnt, cnt + 1))
{-# INLINE sourceUnfoldrMAction #-}
sourceUnfoldrMAction :: (S.IsStream t, S.MonadAsync m) => Int -> t m (m Int)
sourceUnfoldrMAction n = S.serially $ S.unfoldrM step n
where
step cnt =
if cnt > n + value
then return Nothing
else return (Just (return cnt, cnt + 1))
-------------------------------------------------------------------------------
-- Elimination
-------------------------------------------------------------------------------
{-# INLINE runStream #-}
runStream :: Monad m => Stream m a -> m ()
runStream = S.runStream
{-# INLINE toList #-}
{-# INLINE foldr #-}
{-# INLINE foldrM #-}
toList, foldr, foldrM :: Monad m => Stream m Int -> m [Int]
{-# INLINE last #-}
{-# INLINE maximum #-}
{-# INLINE minimum #-}
{-# INLINE find #-}
{-# INLINE findIndex #-}
{-# INLINE elemIndex #-}
{-# INLINE foldl1' #-}
{-# INLINE foldr1 #-}
last, minimum, maximum, find, findIndex, elemIndex, foldl1', foldr1 :: Monad m => Stream m Int -> m (Maybe Int)
{-# INLINE foldl' #-}
{-# INLINE length #-}
{-# INLINE sum #-}
{-# INLINE product #-}
foldl', length, sum, product :: Monad m => Stream m Int -> m Int
{-# INLINE all #-}
{-# INLINE any #-}
{-# INLINE and #-}
{-# INLINE or #-}
{-# INLINE elem #-}
{-# INLINE notElem #-}
elem, notElem, all, any, and, or :: Monad m => Stream m Int -> m Bool
{-# INLINE toNull #-}
toNull :: Monad m => (t m Int -> S.SerialT m Int) -> t m Int -> m ()
toNull t = runStream . t
{-# INLINE uncons #-}
uncons :: Monad m => Stream m Int -> m ()
uncons s = do
r <- S.uncons s
case r of
Nothing -> return ()
Just (_, t) -> uncons t
{-# INLINE init #-}
init :: Monad m => Stream m a -> m ()
init s = S.init s >>= Prelude.mapM_ S.runStream
{-# INLINE tail #-}
tail :: Monad m => Stream m a -> m ()
tail s = S.tail s >>= Prelude.mapM_ tail
{-# INLINE nullHeadTail #-}
nullHeadTail :: Monad m => Stream m Int -> m ()
nullHeadTail s = do
r <- S.null s
when (not r) $ do
_ <- S.head s
S.tail s >>= Prelude.mapM_ nullHeadTail
{-# INLINE mapM_ #-}
mapM_ :: Monad m => Stream m Int -> m ()
mapM_ = S.mapM_ (\_ -> return ())
toList = S.toList
foldr = S.foldr (:) []
foldr1 = S.foldr1 (+)
foldrM = S.foldrM (\a xs -> return (a : xs)) []
foldl' = S.foldl' (+) 0
foldl1' = S.foldl1' (+)
last = S.last
elem = S.elem maxValue
notElem = S.notElem maxValue
length = S.length
all = S.all (<= maxValue)
any = S.any (> maxValue)
and = S.and . S.map (<= maxValue)
or = S.or . S.map (> maxValue)
find = S.find (== maxValue)
findIndex = S.findIndex (== maxValue)
elemIndex = S.elemIndex maxValue
maximum = S.maximum
minimum = S.minimum
sum = S.sum
product = S.product
-------------------------------------------------------------------------------
-- Transformation
-------------------------------------------------------------------------------
{-# INLINE transform #-}
transform :: Monad m => Stream m a -> m ()
transform = runStream
{-# INLINE composeN #-}
composeN
:: Monad m
=> Int -> (Stream m Int -> Stream m Int) -> Stream m Int -> m ()
composeN n f =
case n of
1 -> transform . f
2 -> transform . f . f
3 -> transform . f . f . f
4 -> transform . f . f . f . f
_ -> undefined
-- polymorphic stream version of composeN
{-# INLINE composeN' #-}
composeN'
:: (S.IsStream t, Monad m)
=> Int -> (t m Int -> Stream m Int) -> t m Int -> m ()
composeN' n f =
case n of
1 -> transform . f
2 -> transform . f . S.adapt . f
3 -> transform . f . S.adapt . f . S.adapt . f
4 -> transform . f . S.adapt . f . S.adapt . f . S.adapt . f
_ -> undefined
{-# INLINE scan #-}
{-# INLINE map #-}
{-# INLINE fmap #-}
{-# INLINE mapMaybe #-}
{-# INLINE filterEven #-}
{-# INLINE filterAllOut #-}
{-# INLINE filterAllIn #-}
{-# INLINE takeOne #-}
{-# INLINE takeAll #-}
{-# INLINE takeWhileTrue #-}
{-# INLINE takeWhileMTrue #-}
{-# INLINE dropOne #-}
{-# INLINE dropAll #-}
{-# INLINE dropWhileTrue #-}
{-# INLINE dropWhileMTrue #-}
{-# INLINE dropWhileFalse #-}
{-# INLINE findIndices #-}
{-# INLINE elemIndices #-}
scan, map, fmap, mapMaybe, filterEven, filterAllOut,
filterAllIn, takeOne, takeAll, takeWhileTrue, takeWhileMTrue, dropOne,
dropAll, dropWhileTrue, dropWhileMTrue, dropWhileFalse,
findIndices, elemIndices
:: Monad m
=> Int -> Stream m Int -> m ()
{-# INLINE mapMaybeM #-}
mapMaybeM :: S.MonadAsync m => Int -> Stream m Int -> m ()
{-# INLINE mapM #-}
mapM :: (S.IsStream t, S.MonadAsync m)
=> (t m Int -> S.SerialT m Int) -> Int -> t m Int -> m ()
{-# INLINE sequence #-}
sequence :: (S.IsStream t, S.MonadAsync m)
=> (t m Int -> S.SerialT m Int) -> t m (m Int) -> m ()
scan n = composeN n $ S.scanl' (+) 0
fmap n = composeN n $ Prelude.fmap (+1)
map n = composeN n $ S.map (+1)
mapM t n = composeN' n $ t . S.mapM return
mapMaybe n = composeN n $ S.mapMaybe
(\x -> if Prelude.odd x then Nothing else Just x)
mapMaybeM n = composeN n $ S.mapMaybeM
(\x -> if Prelude.odd x then return Nothing else return $ Just x)
sequence t = transform . t . S.sequence
filterEven n = composeN n $ S.filter even
filterAllOut n = composeN n $ S.filter (> maxValue)
filterAllIn n = composeN n $ S.filter (<= maxValue)
takeOne n = composeN n $ S.take 1
takeAll n = composeN n $ S.take maxValue
takeWhileTrue n = composeN n $ S.takeWhile (<= maxValue)
takeWhileMTrue n = composeN n $ S.takeWhileM (return . (<= maxValue))
dropOne n = composeN n $ S.drop 1
dropAll n = composeN n $ S.drop maxValue
dropWhileTrue n = composeN n $ S.dropWhile (<= maxValue)
dropWhileMTrue n = composeN n $ S.dropWhileM (return . (<= maxValue))
dropWhileFalse n = composeN n $ S.dropWhile (> maxValue)
findIndices n = composeN n $ S.findIndices (== maxValue)
elemIndices n = composeN n $ S.elemIndices maxValue
-------------------------------------------------------------------------------
-- Iteration
-------------------------------------------------------------------------------
iterStreamLen, maxIters :: Int
iterStreamLen = 10
maxIters = 10000
{-# INLINE iterateSource #-}
iterateSource
:: S.MonadAsync m
=> (Stream m Int -> Stream m Int) -> Int -> Int -> Stream m Int
iterateSource g i n = f i (sourceUnfoldrMN iterStreamLen n)
where
f (0 :: Int) m = g m
f x m = g (f (x P.- 1) m)
{-# INLINE iterateMapM #-}
{-# INLINE iterateScan #-}
{-# INLINE iterateFilterEven #-}
{-# INLINE iterateTakeAll #-}
{-# INLINE iterateDropOne #-}
{-# INLINE iterateDropWhileFalse #-}
{-# INLINE iterateDropWhileTrue #-}
iterateMapM, iterateScan, iterateFilterEven, iterateTakeAll, iterateDropOne,
iterateDropWhileFalse, iterateDropWhileTrue
:: S.MonadAsync m
=> Int -> Stream m Int
-- this is quadratic
iterateScan = iterateSource (S.scanl' (+) 0) (maxIters `div` 10)
iterateMapM = iterateSource (S.mapM return) maxIters
iterateFilterEven = iterateSource (S.filter even) maxIters
iterateTakeAll = iterateSource (S.take maxValue) maxIters
iterateDropOne = iterateSource (S.drop 1) maxIters
iterateDropWhileFalse = iterateSource (S.dropWhile (> maxValue)) maxIters
iterateDropWhileTrue = iterateSource (S.dropWhile (<= maxValue)) maxIters
-------------------------------------------------------------------------------
-- Zipping and concat
-------------------------------------------------------------------------------
{-# INLINE zip #-}
{-# INLINE zipM #-}
{-# INLINE concat #-}
zip, zipM, concat :: Monad m => Stream m Int -> m ()
zip src = do
r <- S.tail src
let src1 = fromJust r
transform (S.zipWith (,) src src1)
zipM src = do
r <- S.tail src
let src1 = fromJust r
transform (S.zipWithM (curry return) src src1)
{-# INLINE zipAsync #-}
{-# INLINE zipAsyncM #-}
zipAsync, zipAsyncM :: S.MonadAsync m => Stream m Int -> m ()
zipAsync src = do
r <- S.tail src
let src1 = fromJust r
transform (S.zipAsyncWith (,) src src1)
zipAsyncM src = do
r <- S.tail src
let src1 = fromJust r
transform (S.zipAsyncWithM (curry return) src src1)
concat _n = return ()
-------------------------------------------------------------------------------
-- Mixed Composition
-------------------------------------------------------------------------------
{-# INLINE scanMap #-}
{-# INLINE dropMap #-}
{-# INLINE dropScan #-}
{-# INLINE takeDrop #-}
{-# INLINE takeScan #-}
{-# INLINE takeMap #-}
{-# INLINE filterDrop #-}
{-# INLINE filterTake #-}
{-# INLINE filterScan #-}
{-# INLINE filterMap #-}
scanMap, dropMap, dropScan, takeDrop, takeScan, takeMap, filterDrop,
filterTake, filterScan, filterMap
:: Monad m => Int -> Stream m Int -> m ()
scanMap n = composeN n $ S.map (subtract 1) . S.scanl' (+) 0
dropMap n = composeN n $ S.map (subtract 1) . S.drop 1
dropScan n = composeN n $ S.scanl' (+) 0 . S.drop 1
takeDrop n = composeN n $ S.drop 1 . S.take maxValue
takeScan n = composeN n $ S.scanl' (+) 0 . S.take maxValue
takeMap n = composeN n $ S.map (subtract 1) . S.take maxValue
filterDrop n = composeN n $ S.drop 1 . S.filter (<= maxValue)
filterTake n = composeN n $ S.take maxValue . S.filter (<= maxValue)
filterScan n = composeN n $ S.scanl' (+) 0 . S.filter (<= maxBound)
filterMap n = composeN n $ S.map (subtract 1) . S.filter (<= maxValue)