1
1
mirror of https://github.com/coot/free-category.git synced 2024-11-23 09:55:43 +03:00

Free Arrows - various changes

Added:
* arrArr
* mapArr
* foldArr

Renamed:
* (:.:) as Cons (not exported)

Exported:
* Added Arr, Prod
This commit is contained in:
Marcin Szamotulski 2019-08-31 12:11:59 +02:00
parent 3746ef5d29
commit 08ee2a979b

View File

@ -9,7 +9,11 @@
module Control.Arrow.Free
( -- * Free arrow
Arr (Id)
Arr (Id, Arr, Prod)
, arrArr
, mapArr
, foldArr
-- * Free arrow (CPS style)
, A (..)
, fromA
@ -42,20 +46,38 @@ import Control.Category.Free.Internal
data Arr f a b where
Id :: Arr f a a
(:.:) :: f b c -> Queue (Arr f) a b -> Arr f a c
Cons :: f b c -> Queue (Arr f) a b -> Arr f a c
Arr :: (b -> c) -> Arr f a b -> Arr f a c
Prod :: Arr f a b -> Arr f a c -> Arr f a (b, c)
arrArr :: (b -> c) -> Arr f b c
arrArr bc = Arr bc Id
mapArr :: f b c
-> Arr f a b
-> Arr f a c
mapArr bc ac = Cons bc emptyQ . ac
foldArr :: forall f arr a b.
Arrow arr
=> (forall x y. f x y -> arr x y)
-> Arr f a b
-> arr a b
foldArr _ Id = id
foldArr fun (Cons bc ab) = fun bc . foldQ (foldNatFree2 fun) ab
foldArr fun (Arr f g) = arr f . foldNatFree2 fun g
foldArr fun (Prod f g) = foldNatFree2 fun f &&& foldNatFree2 fun g
instance Category (Arr f) where
id = Id
Id . f = f
f . Id = f
(f :.: g) . h = f :.: (g `snoc` h)
(Cons f g) . h = Cons f (g `snoc` h)
(Arr f g) . h = Arr f (g . h)
(Prod f g) . h = Prod (f . h) (g . h)
instance Arrow (Arr f) where
arr f = Arr f Id
arr = arrArr
first bc = Prod (bc . arr fst) (arr snd)
second bc = Prod (arr fst) (bc . arr snd)
ab *** xy = Prod (ab . arr fst) (xy . arr snd)
@ -65,18 +87,21 @@ type instance AlgebraType0 Arr f = ()
type instance AlgebraType Arr c = Arrow c
instance FreeAlgebra2 Arr where
liftFree2 = \fab -> fab :.: emptyQ
liftFree2 = \fab -> Cons fab emptyQ
{-# INLINE liftFree2 #-}
foldNatFree2 _ Id = id
foldNatFree2 fun (bc :.: ab) = fun bc . foldQ (foldNatFree2 fun) ab
foldNatFree2 fun (Arr f g) = arr f . foldNatFree2 fun g
foldNatFree2 fun (Prod f g) = foldNatFree2 fun f &&& foldNatFree2 fun g
foldNatFree2 = foldArr
{-# INLINE foldNatFree2 #-}
codom2 = proof
forget2 = proof
--
-- Free arrows using CSP style
--
-- | Free arrow using CPS sytle.
--
newtype A f a b
= A { runA :: forall r. Arrow r
=> (forall x y. f x y -> r x y)