1
1
mirror of https://github.com/coot/free-category.git synced 2024-11-23 09:55:43 +03:00

Move type aligned real time queues to an internal module

This commit is contained in:
Marcin Szamotulski 2019-08-31 10:30:41 +02:00
parent 4d0011df04
commit b1f3bda123
2 changed files with 205 additions and 0 deletions

View File

@ -25,6 +25,7 @@ library
exposed-modules:
Control.Arrow.Free
Control.Category.Free
Control.Category.Free.Internal
Control.Category.FreeEff
other-modules:
Paths_free_category

View File

@ -0,0 +1,204 @@
{-# LANGUAGE CPP #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_HADDOCK show-extensions #-}
#if __GLASGOW_HASKELL__ <= 802
-- ghc802 does not infer that 'cons' is used when using a bidirectional
-- pattern
{-# OPTIONS_GHC -Wno-unused-top-binds #-}
-- the 'complete' pragma was introduced in ghc804
{-# OPTIONS_GHC -Wno-incomplete-patterns #-}
#endif
module Control.Category.Free.Internal
( Op (..)
, ListTr (..)
, Queue (NilQ, ConsQ)
, emptyQ
, cons
, uncons
, snoc
, foldQ
, zipWithQ
) where
import Prelude hiding (id, (.))
import Control.Arrow
import Control.Category (Category (..))
#if __GLASGOW_HASKELL__ < 804
import Data.Monoid (Monoid (..))
import Data.Semigroup (Semigroup (..))
#endif
import Control.Algebra.Free2 ( AlgebraType0
, AlgebraType
, FreeAlgebra2 (..)
, proof
)
-- | Oposite categoy in which arrows from @a@ to @b@ are represented by arrows
-- from @b@ to @a@ in the original category.
--
newtype Op (f :: k -> k -> *) (a :: k) (b :: k) = Op { runOp :: f b a }
instance Category f => Category (Op f) where
id = Op id
Op f . Op g = Op (g . f)
-- |
-- Free category encoded as a recursive data type, in a simlar way as
-- @'Control.Monad.Free.Free'@. You can use @'FreeAlgebra2'@ class instance:
--
-- prop> liftFree2 @Cat :: f a b -> Cat f ab
-- prop> foldNatFree2 @Cat :: Category d => (forall x y. f x y -> d x y) -> Cat f a b -> d a b
--
-- The same performance concerns that apply to @'Control.Monad.Free.Free'@
-- apply to this encoding of a free category.
--
data ListTr :: (k -> k -> *) -> k -> k -> * where
NilTr :: ListTr f a a
(:.:) :: f b c -> ListTr f a b -> ListTr f a c
instance Category (ListTr f) where
id = NilTr
NilTr . ys = ys
(x :.: xs) . ys = x :.: (xs . ys)
infixr 9 :.:
instance Arrow f => Arrow (ListTr f) where
arr ab = arr ab :.: NilTr
(fxb :.: cax) *** (fyb :.: cay) = (fxb *** fyb) :.: (cax *** cay)
(fxb :.: cax) *** NilTr = (fxb *** arr id) :.: (cax *** NilTr)
NilTr *** (fxb :.: cax) = (arr id *** fxb) :.: (NilTr *** cax)
NilTr *** NilTr = NilTr
instance ArrowZero f => ArrowZero (ListTr f) where
zeroArrow = zeroArrow :.: NilTr
instance ArrowChoice f => ArrowChoice (ListTr f) where
(fxb :.: cax) +++ (fyb :.: cay) = (fxb +++ fyb) :.: (cax +++ cay)
(fxb :.: cax) +++ NilTr = (fxb +++ arr id) :.: (cax +++ NilTr)
NilTr +++ (fxb :.: cax) = (arr id +++ fxb) :.: (NilTr +++ cax)
NilTr +++ NilTr = NilTr
instance Semigroup (ListTr f o o) where
f <> g = g . f
instance Monoid (ListTr f o o) where
mempty = NilTr
#if __GLASGOW_HASKELL__ < 804
mappend = (<>)
#endif
type instance AlgebraType0 ListTr f = ()
type instance AlgebraType ListTr c = Category c
instance FreeAlgebra2 ListTr where
liftFree2 = \fab -> fab :.: NilTr
{-# INLINE liftFree2 #-}
foldNatFree2 _ NilTr = id
foldNatFree2 fun (bc :.: ab) = fun bc . foldNatFree2 fun ab
{-# INLINE foldNatFree2 #-}
codom2 = proof
forget2 = proof
-- | Type alligned real time queues; Based on `Purely Functinal Data Structures`
-- C.Okasaki.
--
-- Upper bounds of `cons`, `snoc`, `uncons` are @O\(1\)@ (worst case).
--
-- Invariant: sum of lengths of two last least is equal the length of the first
-- one.
--
data Queue (f :: k -> k -> *) (a :: k) (b :: k) where
Queue :: forall f a c b x.
!(ListTr f b c)
-> !(ListTr (Op f) b a)
-> !(ListTr f b x)
-> Queue f a c
emptyQ :: Queue (f :: k -> k -> *) a a
emptyQ = Queue NilTr NilTr NilTr
cons :: forall (f :: k -> k -> *) a b c.
f b c
-> Queue f a b
-> Queue f a c
cons fbc (Queue f r s) = Queue (fbc :.: f) r (undefined :.: s)
data ViewL f a b where
EmptyL :: ViewL f a a
(:<) :: f b c -> Queue f a b -> ViewL f a c
-- | 'uncons' a 'Queue', complexity: @O\(1\)@
--
uncons :: Queue f a b
-> ViewL f a b
uncons (Queue NilTr NilTr _) = EmptyL
uncons (Queue (tr :.: f) r (_ :.: s)) = tr :< exec f r s
uncons _ = error "Queue.uncons: invariant violation"
snoc :: forall (f :: k -> k -> *) a b c.
Queue f b c
-> f a b
-> Queue f a c
snoc (Queue f r s) g = exec f (Op g :.: r) s
pattern ConsQ :: f b c -> Queue f a b -> Queue f a c
pattern ConsQ a as <- (uncons -> a :< as) where
ConsQ = cons
pattern NilQ :: () => a ~ b => Queue f a b
pattern NilQ <- (uncons -> EmptyL) where
NilQ = emptyQ
#if __GLASGOW_HASKELL__ > 802
{-# complete NilQ, ConsQ #-}
#endif
-- | Efficient fold of a queue into a category.
--
-- /complexity/ @O\(n\)@
--
foldQ :: forall (f :: k -> k -> *) c a b.
Category c
=> (forall x y. f x y -> c x y)
-> Queue f a b
-> c a b
foldQ nat queue = case queue of
NilQ -> id
ConsQ tr queue' -> nat tr . foldQ nat queue'
zipWithQ :: forall f g a b a' b'.
Arrow f
=> (forall x y x' y'. f x y -> f x' y' -> f (g x x') (g y y'))
-> Queue f a b
-> Queue f a' b'
-> Queue f (g a a') (g b b')
zipWithQ fn queueA queueB = case (queueA, queueB) of
(NilQ, NilQ) -> NilQ
(NilQ, ConsQ trB' queueB') -> ConsQ (id `fn` trB') (zipWithQ fn NilQ queueB')
(ConsQ trA' queueA', NilQ) -> ConsQ (trA' `fn` id) (zipWithQ fn queueA' NilQ)
(ConsQ trA' queueA', ConsQ trB' queueB')
-> ConsQ (trA' `fn` trB') (zipWithQ fn queueA' queueB')
exec :: ListTr f b c -> ListTr (Op f) b a -> ListTr f b x -> Queue f a c
exec xs ys (_ :.: t) = Queue xs ys t
exec xs ys NilTr = Queue xs' NilTr xs'
where
xs' = rotate xs ys NilTr
rotate :: ListTr f c d -> ListTr (Op f) c b -> ListTr f a b -> ListTr f a d
rotate NilTr (Op f :.: NilTr) a = f :.: a
rotate (f :.: fs) (Op g :.: gs) a = f :.: rotate fs gs (g :.: a)
rotate _ _ _ = error "Queue.rotate: impossible happend"