1
1
mirror of https://github.com/coot/free-category.git synced 2024-11-23 00:56:58 +03:00

Fix typos

This commit is contained in:
Manuel Bärenz 2020-09-07 21:13:09 +02:00 committed by Marcin Szamotulski
parent 963b3f1221
commit b4a67b3489
3 changed files with 8 additions and 8 deletions

View File

@ -14,7 +14,7 @@ Free arrows and free Kleisli categories are also included.
Free categories are useful to model state machines in a simple yet type safe
manner. For that purpose `Kleisli` categories are a very useful target which
allows to include monadic computations. This package contains a useful
generalisation of `Kliesli` categories captured by `EffectCategory` class
generalisation of `Kleisli` categories captured by `EffectCategory` class
(categories with effects), and a (free) transformer which lifts a category to
a category with effects.
@ -29,8 +29,8 @@ Check performance characteristics of various representations:
## Resources
* [LoginStateMachine](https://github.com/coot/free-category/blob/master/examples/src/LoginStateMachine.hs):
based on [State Machines All The Way
Down](https://www.youtube.com/watch?v=xq7ZuSRgCR4) by Edwin Bradly, 2017 You
can run it with `cabal new-run examples:login-state-machine`.
Down](https://www.youtube.com/watch?v=xq7ZuSRgCR4) by Edwin Bradly, 2017.
You can run it with `cabal new-run examples:login-state-machine`.
* Read more [here](https://coot.me/posts/finite-state-machines.html) on
a simple example of a finite state machine encoded using a free category
using a simple GADT.

View File

@ -116,7 +116,7 @@ instance FreeAlgebra2 Arr where
-- Free arrows using CSP style
--
-- | Free arrow using CPS sytle.
-- | Free arrow using CPS style.
--
newtype A f a b
= A { runA :: forall r. Arrow r

View File

@ -73,8 +73,8 @@ liftEffect :: ( Monad m
=> tr a b -> EffCat m (cat tr) a b
liftEffect = liftFree2 . liftFree2
-- | Fold @'FreeLifing'@ category based on a free category @'cat' tr@ (e.g.
-- @'Cat' tr@) using a functor @tr x y -> c x y@.
-- | Fold @'FreeLifting'@ category based on a free category @'cat' tr@ (e.g.
-- @'C' tr@) using a functor @tr x y -> c x y@.
--
foldNatEffCat
:: ( Monad m
@ -89,7 +89,7 @@ foldNatEffCat
-> c a b
foldNatEffCat nat = foldNatFree2 (foldNatFree2 nat)
-- | Functor from @(->)@ category to @'Kleisli' m@. If @m@ is 'Identity' then
-- | Functor from @(->)@ category to @'Kleisli' m@. If @m@ is 'Identity' then
-- it will respect 'effect' i.e.
-- @'liftKleisli' ('effect' ar) = 'effect' ('liftKleisli' \<$\> ar)@.
--