mirror of
https://github.com/coot/free-category.git
synced 2024-11-22 16:22:05 +03:00
Rename: EffCategory, FreeEffCat
This commit is contained in:
parent
7efa4c4430
commit
bb0e91b631
@ -23,7 +23,7 @@ import Test.QuickCheck
|
||||
import Control.Category.Free (Cat)
|
||||
|
||||
-- Import classes and combintators used in this example
|
||||
import Control.Category.Lifting
|
||||
import Control.Category.FreeEff
|
||||
|
||||
{-------------------------------------------------------------------------------
|
||||
-- Example State Machine, inspired by:
|
||||
@ -66,16 +66,16 @@ data Tr a from to where
|
||||
|
||||
login :: Monad m
|
||||
=> SStateType st
|
||||
-> FreeLifting m (Cat (Tr a)) (State a 'LoggedOutType) (State a st)
|
||||
-> FreeEffCat m (Cat (Tr a)) (State a 'LoggedOutType) (State a st)
|
||||
login = liftCat . Login
|
||||
|
||||
logout :: Monad m
|
||||
=> Maybe a
|
||||
-> FreeLifting m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedOutType)
|
||||
-> FreeEffCat m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedOutType)
|
||||
logout = liftCat . Logout
|
||||
|
||||
access :: Monad m
|
||||
=> FreeLifting m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedInType)
|
||||
=> FreeEffCat m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedInType)
|
||||
access = liftCat Access
|
||||
|
||||
type Username = String
|
||||
@ -149,7 +149,7 @@ accessSecret
|
||||
-- @'HandleLogin'@ (with a small modifications) but this way we are able to
|
||||
-- test it with a pure @'HandleLogin'@ (see @'handleLoginPure'@).
|
||||
-> HandleLogin m String a
|
||||
-> FreeLifting m (Cat (Tr a)) (State a 'LoggedOutType) (State a 'LoggedOutType)
|
||||
-> FreeEffCat m (Cat (Tr a)) (State a 'LoggedOutType) (State a 'LoggedOutType)
|
||||
accessSecret 0 HandleLogin{handleAccessDenied} = lift $ handleAccessDenied $> id
|
||||
accessSecret n HandleLogin{handleLogin} = lift $ do
|
||||
st <- handleLogin
|
||||
@ -159,7 +159,7 @@ accessSecret n HandleLogin{handleLogin} = lift $ do
|
||||
-- login failure
|
||||
Left handler' -> return $ accessSecret (pred n) handler'
|
||||
where
|
||||
handle :: HandleAccess m a -> Maybe a -> FreeLifting m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedOutType)
|
||||
handle :: HandleAccess m a -> Maybe a -> FreeEffCat m (Cat (Tr a)) (State a 'LoggedInType) (State a 'LoggedOutType)
|
||||
handle LogoutHandler ma = logout ma
|
||||
handle (AccessHandler accessHandler dataHandler) _ = lift $ do
|
||||
a <- accessHandler
|
||||
@ -191,7 +191,7 @@ getData nat n handleLogin = case foldNatLift nat (accessSecret n handleLogin) of
|
||||
-- here, as we don't use the monad in the transformation, we need
|
||||
-- a transformation into a category that satisfies the @'Lifing'@ constraint.
|
||||
-- This is bause we will need the monad whn @'foldNatLift'@ will walk over the
|
||||
-- constructors of '@FreeLifting'@ category.
|
||||
-- constructors of '@FreeEffCat'@ category.
|
||||
--
|
||||
natPure :: forall m a from to. Monad m => Tr a from to -> Kleisli m from to
|
||||
natPure = liftKleisli . nat
|
||||
|
@ -1,5 +1,5 @@
|
||||
name: free-category
|
||||
version: 0.0.1.0
|
||||
version: 0.0.2.0
|
||||
synopsis: Free category
|
||||
description: Free categories
|
||||
category: Algebra, Control, Monads, Category
|
||||
@ -24,7 +24,7 @@ library
|
||||
exposed-modules:
|
||||
Control.Arrow.Free
|
||||
Control.Category.Free
|
||||
Control.Category.Lifting
|
||||
Control.Category.FreeEff
|
||||
other-modules:
|
||||
Paths_free_category
|
||||
hs-source-dirs:
|
||||
|
@ -1,7 +1,7 @@
|
||||
{-# LANGUAGE FunctionalDependencies #-}
|
||||
module Control.Category.Lifting
|
||||
( Lifting (..)
|
||||
, FreeLifting (..)
|
||||
module Control.Category.FreeEff
|
||||
( EffCategory (..)
|
||||
, FreeEffCat (..)
|
||||
, liftCat
|
||||
, foldNatLift
|
||||
, liftKleisli
|
||||
@ -17,35 +17,37 @@ import Control.Category.Free (Cat (..))
|
||||
import Control.Algebra.Free2 (FreeAlgebra2 (..))
|
||||
import Data.Algebra.Free (AlgebraType, AlgebraType0, proof)
|
||||
|
||||
-- | Categories which can lift monadic actions.
|
||||
|
||||
-- | Categories which can lift monadic actions, i.e. effectful categories.
|
||||
--
|
||||
class Category c => Lifting c m | c -> m where
|
||||
class Category c => EffCategory c m | c -> m where
|
||||
lift :: m (c a b) -> c a b
|
||||
|
||||
instance Monad m => Lifting (Kleisli m) m where
|
||||
instance Monad m => EffCategory (Kleisli m) m where
|
||||
lift m = Kleisli (\a -> m >>= \(Kleisli f) -> f a)
|
||||
|
||||
instance Lifting (->) Identity where
|
||||
instance EffCategory (->) Identity where
|
||||
lift = runIdentity
|
||||
|
||||
-- | Category transformer, which adds @'Lifting'@ instance to the underlying
|
||||
-- base category.
|
||||
data FreeLifting :: (* -> *) -> (k -> k -> *) -> k -> k -> * where
|
||||
Base :: c a b -> FreeLifting m c a b
|
||||
Lift :: m (FreeLifting m c a b) -> FreeLifting m c a b
|
||||
-- | Category transformer, which adds @'EffCategory'@ instance to the
|
||||
-- underlying base category.
|
||||
--
|
||||
data FreeEffCat :: (* -> *) -> (k -> k -> *) -> k -> k -> * where
|
||||
Base :: c a b -> FreeEffCat m c a b
|
||||
Lift :: m (FreeEffCat m c a b) -> FreeEffCat m c a b
|
||||
|
||||
instance (Functor m, Category c) => Category (FreeLifting m c) where
|
||||
instance (Functor m, Category c) => Category (FreeEffCat m c) where
|
||||
id = Base id
|
||||
Base f . Base g = Base $ f . g
|
||||
f . Lift mg = Lift $ (f .) <$> mg
|
||||
Lift mf . g = Lift $ (. g) <$> mf
|
||||
|
||||
instance (Functor m, Category c) => Lifting (FreeLifting m c) m where
|
||||
instance (Functor m, Category c) => EffCategory (FreeEffCat m c) m where
|
||||
lift = Lift
|
||||
|
||||
type instance AlgebraType0 (FreeLifting m) c = (Monad m, Category c)
|
||||
type instance AlgebraType (FreeLifting m) c = Lifting c m
|
||||
instance Monad m => FreeAlgebra2 (FreeLifting m) where
|
||||
type instance AlgebraType0 (FreeEffCat m) c = (Monad m, Category c)
|
||||
type instance AlgebraType (FreeEffCat m) c = EffCategory c m
|
||||
instance Monad m => FreeAlgebra2 (FreeEffCat m) where
|
||||
liftFree2 = Base
|
||||
foldNatFree2 nat (Base cab) = nat cab
|
||||
foldNatFree2 nat (Lift mcab) = lift $ foldNatFree2 nat <$> mcab
|
||||
@ -54,25 +56,25 @@ instance Monad m => FreeAlgebra2 (FreeLifting m) where
|
||||
forget2 = proof
|
||||
|
||||
-- | Wrap a transition into a free category @'Cat'@ and then in
|
||||
-- @'FreeLifting'@
|
||||
-- @'FreeEffCat'@
|
||||
--
|
||||
-- prop> liftCat tr = Base (tr :.: Id)
|
||||
--
|
||||
liftCat :: Monad m => tr a b -> FreeLifting m (Cat tr) a b
|
||||
liftCat :: Monad m => tr a b -> FreeEffCat m (Cat tr) a b
|
||||
liftCat = liftFree2 . liftFree2
|
||||
|
||||
-- | Fold @'FreeLifing'@ category based on a free category @'Cat' tr@ using
|
||||
-- a functor @tr x y -> c x y@.
|
||||
--
|
||||
foldNatLift
|
||||
:: (Monad m, Lifting c m)
|
||||
:: (Monad m, EffCategory c m)
|
||||
=> (forall x y. tr x y -> c x y)
|
||||
-> FreeLifting m (Cat tr) a b
|
||||
-> FreeEffCat m (Cat tr) a b
|
||||
-> c a b
|
||||
foldNatLift nat = foldNatFree2 (foldNatFree2 nat)
|
||||
|
||||
-- | Functor from @'->'@ category to @'Kleisli' m@. If @m@ is @Identity@ then
|
||||
-- it will respect @'lift'@ i.e. @lfitKleisli (lift ar) = lift (liftKleisli <$>
|
||||
-- it will respect @'lift'@ i.e. @liftKleisli (lift ar) = lift (liftKleisli <$>
|
||||
-- ar).
|
||||
--
|
||||
liftKleisli :: Applicative m => (a -> b) -> Kleisli m a b
|
Loading…
Reference in New Issue
Block a user