1
1
mirror of https://github.com/coot/free-category.git synced 2024-11-22 16:22:05 +03:00

Basic tests of Cat and friends

This commit is contained in:
Marcin Szamotulski 2019-09-02 21:51:44 +02:00
parent 066ce9682f
commit d58d6b30f1
4 changed files with 242 additions and 0 deletions

View File

@ -53,6 +53,7 @@ test-suite test-cats
main-is:
Main.hs
other-modules:
Test.Cat
Test.Queue
default-language: Haskell2010
build-depends:

View File

@ -123,6 +123,12 @@ foldCat nat (Cat q0 (Op tr0)) =
{-# INLINE foldCat #-}
-- TODO: add a proof that unsafeCoerce is safe
-- > op Id = Id -- this is ok
-- > op (Cat q (Op tr))
-- > = tr₀@(Cat emptyQ (Op tr)) . foldNatQ unDual q
-- -- we assume that q contains Op (Op tr₁),…, Op (Op trₙ)
-- > = tr₀ . tr₁@(Cat q₁` tr₁`) . ⋯ . trₙ@(Cat qₙ` trₙ`)
-- > = Cat (qₙ` :> trₙ₋₁ :> ⋯ :> tr₀) trₙ`
op :: forall (f :: k -> k -> *) x y.
Cat f x y
-> Cat (Op f) y x

View File

@ -3,6 +3,7 @@ module Main (main) where
import Test.Tasty
import qualified Test.Queue
import qualified Test.Cat
main :: IO ()
main = defaultMain tests
@ -12,4 +13,5 @@ tests =
testGroup "free-categories"
-- data structures
[ Test.Queue.tests
, Test.Cat.tests
]

233
test/Test/Cat.hs Normal file
View File

@ -0,0 +1,233 @@
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Test.Cat (tests) where
import Prelude hiding ((.), id)
import Control.Category
import Text.Show.Functions ()
import Numeric.Natural (Natural)
import Control.Algebra.Free2
import Control.Category.Free
import Test.QuickCheck
import Test.Tasty (TestTree, testGroup)
import Test.Tasty.QuickCheck (testProperty)
tests :: TestTree
tests =
testGroup "Control.Category.Free"
[ testProperty "Cat" prop_Cat
, testProperty "CatL" prop_CatL
, testProperty "C" prop_C
]
data Tr a b where
-- Num transition
NumTr :: Num a => (a -> a) -> Tr a a
FromInteger :: Num b => Tr Integer b
-- Integral transition
ToInteger :: Integral a => Tr a Integer
interpretTr :: Tr a b -> a -> b
interpretTr (NumTr f) = f
interpretTr FromInteger = fromInteger
interpretTr ToInteger = toInteger
instance (Show a, Show b) => Show (Tr a b) where
show (NumTr f) = "NumTr " ++ show f
show FromInteger = "FromInteger"
show ToInteger = "ToInteger"
data SomeNumTr f a where
SomeNumTr :: Num a
=> f Tr a a
-> SomeNumTr f a
instance Show (f Tr a a) => Show (SomeNumTr f a) where
show (SomeNumTr f) = "SomeNumTr " ++ show f
data SomeIntegralTr f a where
SomeIntegralTr :: Integral a
=> f Tr a a
-> SomeIntegralTr f a
instance Show (f Tr a a) => Show (SomeIntegralTr f a) where
show (SomeIntegralTr f) = "SomeIntegralTr " ++ show f
-- A 'fromIntegral' transition in any free category @f@.
fromIntegralTr :: ( Integral a
, Num b
, Category (f Tr)
, AlgebraType0 f Tr
, FreeAlgebra2 f
) => f Tr a b
fromIntegralTr = liftFree2 FromInteger . liftFree2 ToInteger
data Sing a where
SInt :: Sing Int
SInteger :: Sing Integer
SNatural :: Sing Natural
instance Show (Sing a) where
show SInt = "SInt"
show SInteger = "SInteger"
show SNatural = "SNatural"
data AnySing where
AnySing :: Eq a => Sing a -> AnySing
instance Eq AnySing where
AnySing SInt == AnySing SInt = True
AnySing SInteger == AnySing SInteger = True
AnySing SNatural == AnySing SNatural = True
_ == _ = False
instance Show AnySing where
show (AnySing sing) = show sing
instance Arbitrary AnySing where
arbitrary = oneof
[ pure $ AnySing SInt
, pure $ AnySing SInteger
, pure $ AnySing SNatural
]
instance Arbitrary Natural where
arbitrary =
fromIntegral . getPositive <$> (arbitrary :: Gen (Positive Integer))
instance CoArbitrary Natural where
coarbitrary a = variant (fromIntegral a :: Int)
data AnyListTr b where
AnyListTr :: Eq c => ListTr Tr b c -> Sing c -> AnyListTr b
genNextTr :: Sing b
-> Gen (AnyListTr b)
genNextTr b = do
AnySing c <- arbitrary
case (b, c) of
(SInt, SInt) ->
(\f -> AnyListTr (ConsTr (NumTr f) NilTr) c) <$> arbitrary
(SInteger, SInteger) ->
(\f -> AnyListTr (ConsTr (NumTr f) NilTr) c) <$> arbitrary
(SNatural, SNatural) ->
(\f -> AnyListTr (ConsTr (NumTr f) NilTr) c) <$> arbitrary
(SInt, SInteger) ->
pure $ AnyListTr fromIntegralTr c
(SInt, SNatural) ->
pure $ AnyListTr (fromIntegralTr . liftFree2 (NumTr abs)) c
(SInteger, SInt) ->
pure $ AnyListTr fromIntegralTr c
(SNatural, SInt) ->
pure $ AnyListTr fromIntegralTr c
(SNatural, SInteger) ->
pure $ AnyListTr fromIntegralTr c
(SInteger, SNatural) ->
pure $ AnyListTr (fromIntegralTr . liftFree2 (NumTr abs)) c
data ArbListTr where
ArbListTr :: Eq b => ListTr Tr a b -> Sing a -> Sing b -> ArbListTr
#if __GLASGOW_HASKELL__ >= 806
instance (forall x y. Show (Tr x y)) => Show ArbListTr where
show (ArbListTr listTr a b) =
"ArbListTr "
++ show a
++ " -> "
++ show b
++ " "
++ show listTr
#else
instance Show ArbListTr where
show (ArbListTr _listTr a b) =
"ArbListTr "
++ show a
++ " -> "
++ show b
#endif
instance Arbitrary ArbListTr where
arbitrary = sized $ \n -> do
k <- choose (0, n)
AnySing a <- arbitrary
go k a (AnyListTr NilTr a)
where
go 0 a (AnyListTr ab b) = pure $ ArbListTr ab a b
go n a (AnyListTr ab b) = do
AnyListTr bc c <- genNextTr b
-- (.) can be used as (++) for ListTr
go (n - 1) a $ AnyListTr (bc . ab) c
--
-- test 'Cat', 'CatL' and 'C' treating 'ListTr' as a model to compare to.
--
prop_Cat, prop_CatL, prop_C
:: Blind ArbListTr -> Bool
prop_Cat (Blind (ArbListTr listTr SInt _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @Cat listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_Cat (Blind (ArbListTr listTr SInteger _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @Cat listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_Cat (Blind (ArbListTr listTr SNatural _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @Cat listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_CatL (Blind (ArbListTr listTr SInt _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @CatL listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_CatL (Blind (ArbListTr listTr SInteger _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @CatL listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_CatL (Blind (ArbListTr listTr SNatural _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @CatL listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_C (Blind (ArbListTr listTr SInt _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @C listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_C (Blind (ArbListTr listTr SInteger _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @C listTr) 0
==
foldNatFree2 interpretTr listTr 0
prop_C (Blind (ArbListTr listTr SNatural _)) =
foldNatFree2 interpretTr (hoistFreeH2 @_ @C listTr) 0
==
foldNatFree2 interpretTr listTr 0