1
1
mirror of https://github.com/coot/free-category.git synced 2024-11-23 09:55:43 +03:00
free-category/bench/Main.hs
Marcin Szamotulski 131fd47651 Renamed arr family of function to lift
e.g. arrC -> liftC, arrCat -> liftCat

'arr' is used in 'Arrow' class and we use 'lift' prefix in
'AlgebraFree2' class, thus lift prefix seems more appropriate.
2019-09-08 21:08:52 +02:00

157 lines
5.2 KiB
Haskell

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE GADTs #-}
module Main where
import Prelude hiding (id, (.))
import Control.Category
import Data.Foldable (foldl')
import Control.Category.Free
import Control.Category.Free.Internal
import Criterion
import Criterion.Main
data Alg a b where
Add :: !Int -> Alg Int Int
Mul :: !Int -> Alg Int Int
instance Show (Alg a b) where
show (Add i) = "Add " ++ show i
show (Mul i) = "Mul " ++ show i
interpret :: Alg a b -> a -> b
interpret (Add i) = (+i)
interpret (Mul i) = (*i)
-- foldr on outer and inner lists
fromListR :: Category (f Alg) => (Int -> f Alg Int Int) -> [[Int]] -> f Alg Int Int
fromListR f = foldr (\is c -> foldr (\i c' -> f i . c') id is . c) id
-- foldr on outer and foldl on inner list
fromListRL :: Category (f Alg) => (Int -> f Alg Int Int) -> [[Int]] -> f Alg Int Int
fromListRL f = foldr (\is c -> foldl (\c' i -> c' . f i) id is . c) id
-- foldl on outer and inner loop
fromListL :: Category (f Alg) => (Int -> f Alg Int Int) -> [[Int]] -> f Alg Int Int
fromListL f = foldl' (\c is -> c . foldl' (\c' i -> c' . f i) id is) id
-- foldl on outer and foldr on inner loop
fromListLR :: Category (f Alg) => (Int -> f Alg Int Int) -> [[Int]] -> f Alg Int Int
fromListLR f = foldr (\is c -> foldl' (\c' i -> c' . f i) id is . c) id
-- alternate foldl and foldr
fromListM' :: Category (f Alg) => (Int -> f Alg Int Int) -> [Int] -> f Alg Int Int
fromListM' f is = foldl' (\c (i, x) -> if x then c . f i
else f i . c)
id (zip is (concat $ repeat [True, False]))
-- alternate foldl and foldr
fromListM :: Category (f Alg) => (Int -> f Alg Int Int) -> [[Int]] -> f Alg Int Int
fromListM f iss = foldl' (\c (is, x) -> if x then c . fromListM' f is
else fromListM' f is . c)
id (zip iss (concat $ repeat [True, False]))
setupEnv :: [[Int]]
setupEnv = replicate 100 [1..100]
main :: IO ()
main = defaultMain
[ env (pure setupEnv) $ \ints -> bgroup "main"
[ bgroup "Cat" $
[ bench "right right" $
whnf
(\c -> foldNatCat interpret c 0)
(fromListR (liftCat . Add) ints)
, bench "right left" $
whnf
(\c -> foldNatCat interpret c 0)
(fromListRL (liftCat . Add) ints)
, bench "left left" $
whnf
(\c -> foldNatCat interpret c 0)
(fromListL (liftCat . Add) ints)
, bench "left right" $
whnf
(\c -> foldNatCat interpret c 0)
(fromListLR (liftCat . Add) ints)
, bench "alternate" $
whnf
(\c -> foldNatCat interpret c 0)
(fromListM (liftCat . Add) ints)
]
, bgroup "Queue"
[ bench "right right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListR (\i -> ConsQ (Add i) NilQ) ints)
, bench "right left" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListRL (\i -> ConsQ (Add i) NilQ) ints)
, bench "left left " $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListL (\i -> ConsQ (Add i) NilQ) ints)
, bench "left right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListLR (\i -> ConsQ (Add i) NilQ) ints)
, bench "alternate " $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListM (\i -> ConsQ (Add i) NilQ) ints)
]
, bgroup "ListTr"
[ bench "right right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListR (\i -> ConsTr (Add i) NilTr) ints)
, bench "right left" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListRL (\i -> ConsTr (Add i) NilTr) ints)
, bench "left left " $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListL (\i -> ConsTr (Add i) NilTr) ints)
, bench "left right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListLR (\i -> ConsTr (Add i) NilTr) ints)
, bench "alternate " $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListM (\i -> ConsTr (Add i) NilTr) ints)
]
, bgroup "C"
[ bench "right right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListR ((\i -> C $ \k -> k (Add i))) ints)
, bench "right left" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListRL ((\i -> C $ \k -> k (Add i))) ints)
, bench "left left" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListL ((\i -> C $ \k -> k (Add i))) ints)
, bench "left right" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListLR ((\i -> C $ \k -> k (Add i))) ints)
, bench "alternate" $
whnf
(\c -> foldNatFree2 interpret c 0)
(fromListM ((\i -> C $ \k -> k (Add i))) ints)
]
]
]