barrier/client/CXWindowsSecondaryScreen.cpp
crs 419eadfaf9 changed processing of key events in X. secondary screen now
activates/deactivates modifiers as necessary to get a keycode
interpreted as the expected keysym.  still some work and
testing to do on this.
2002-04-26 17:38:01 +00:00

760 lines
20 KiB
C++

#include "CXWindowsSecondaryScreen.h"
#include "CClient.h"
#include "CThread.h"
#include "CLog.h"
#include <assert.h>
#include <X11/X.h>
#include <X11/Xutil.h>
#define XK_MISCELLANY
#include <X11/keysymdef.h>
#include <X11/extensions/XTest.h>
//
// CXWindowsSecondaryScreen
//
CXWindowsSecondaryScreen::CXWindowsSecondaryScreen() :
m_client(NULL),
m_window(None)
{
// do nothing
}
CXWindowsSecondaryScreen::~CXWindowsSecondaryScreen()
{
assert(m_window == None);
}
void CXWindowsSecondaryScreen::run()
{
assert(m_window != None);
for (;;) {
// wait for and get the next event
XEvent xevent;
if (!getEvent(&xevent)) {
break;
}
// handle event
switch (xevent.type) {
case MappingNotify: {
// keyboard mapping changed
CDisplayLock display(this);
XRefreshKeyboardMapping(&xevent.xmapping);
updateKeys(display);
updateKeycodeMap(display);
updateModifierMap(display);
updateModifiers(display);
break;
}
case LeaveNotify: {
// mouse moved out of hider window somehow. hide the window.
assert(m_window != None);
CDisplayLock display(this);
XUnmapWindow(display, m_window);
break;
}
case SelectionClear:
// we just lost the selection. that means someone else
// grabbed the selection so this screen is now the
// selection owner. report that to the server.
if (lostClipboard(xevent.xselectionclear.selection,
xevent.xselectionclear.time)) {
m_client->onClipboardChanged();
}
break;
case SelectionNotify:
// notification of selection transferred. we shouldn't
// get this here because we handle them in the selection
// retrieval methods. we'll just delete the property
// with the data (satisfying the usual ICCCM protocol).
if (xevent.xselection.property != None) {
CDisplayLock display(this);
XDeleteProperty(display, m_window, xevent.xselection.property);
}
break;
case SelectionRequest:
// somebody is asking for clipboard data
if (xevent.xselectionrequest.owner == m_window) {
addClipboardRequest(m_window,
xevent.xselectionrequest.requestor,
xevent.xselectionrequest.selection,
xevent.xselectionrequest.target,
xevent.xselectionrequest.property,
xevent.xselectionrequest.time);
}
break;
case PropertyNotify:
// clipboard transfers involve property changes so forward
// the event to the superclass. we only care about the
// deletion of properties.
if (xevent.xproperty.state == PropertyDelete) {
processClipboardRequest(xevent.xproperty.window,
xevent.xproperty.atom,
xevent.xproperty.time);
}
break;
case DestroyNotify:
// looks like one of the windows that requested a clipboard
// transfer has gone bye-bye.
destroyClipboardRequest(xevent.xdestroywindow.window);
break;
}
}
}
void CXWindowsSecondaryScreen::stop()
{
doStop();
}
void CXWindowsSecondaryScreen::open(CClient* client)
{
assert(m_client == NULL);
assert(client != NULL);
// set the client
m_client = client;
// open the display
openDisplay();
// verify the availability of the XTest extension
CDisplayLock display(this);
int majorOpcode, firstEvent, firstError;
if (!XQueryExtension(display, XTestExtensionName,
&majorOpcode, &firstEvent, &firstError))
throw int(6); // FIXME -- make exception for this
// update key state
updateKeys(display);
updateKeycodeMap(display);
updateModifierMap(display);
updateModifiers(display);
}
void CXWindowsSecondaryScreen::close()
{
assert(m_client != NULL);
// close the display
closeDisplay();
// done with client
m_client = NULL;
}
void CXWindowsSecondaryScreen::enter(SInt32 x, SInt32 y)
{
assert(m_window != None);
CDisplayLock display(this);
// warp to requested location
XTestFakeMotionEvent(display, getScreen(), x, y, CurrentTime);
XSync(display, False);
// show cursor
XUnmapWindow(display, m_window);
// update our keyboard state to reflect the local state
updateKeys(display);
updateModifiers(display);
}
void CXWindowsSecondaryScreen::leave()
{
CDisplayLock display(this);
leaveNoLock(display);
}
void CXWindowsSecondaryScreen::keyDown(
KeyID key, KeyModifierMask mask)
{
Keystrokes keys;
KeyCode keycode;
CDisplayLock display(this);
// get the sequence of keys to simulate key press and the final
// modifier state.
m_mask = mapKey(keys, keycode, key, mask, True);
if (keys.empty())
return;
// generate key events
for (Keystrokes::const_iterator k = keys.begin(); k != keys.end(); ++k)
XTestFakeKeyEvent(display, k->first, k->second, CurrentTime);
// note that key is now down
m_keys[keycode] = true;
// update
XSync(display, False);
}
void CXWindowsSecondaryScreen::keyRepeat(
KeyID, KeyModifierMask, SInt32)
{
CDisplayLock display(this);
// FIXME
}
void CXWindowsSecondaryScreen::keyUp(
KeyID key, KeyModifierMask mask)
{
Keystrokes keys;
KeyCode keycode;
CDisplayLock display(this);
// get the sequence of keys to simulate key release and the final
// modifier state.
m_mask = mapKey(keys, keycode, key, mask, False);
if (keys.empty())
return;
// generate key events
for (Keystrokes::const_iterator k = keys.begin(); k != keys.end(); ++k)
XTestFakeKeyEvent(display, k->first, k->second, CurrentTime);
// note that key is now up
m_keys[keycode] = false;
// update
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseDown(ButtonID button)
{
CDisplayLock display(this);
XTestFakeButtonEvent(display, mapButton(button), True, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseUp(ButtonID button)
{
CDisplayLock display(this);
XTestFakeButtonEvent(display, mapButton(button), False, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseMove(SInt32 x, SInt32 y)
{
CDisplayLock display(this);
XTestFakeMotionEvent(display, getScreen(), x, y, CurrentTime);
XSync(display, False);
}
void CXWindowsSecondaryScreen::mouseWheel(SInt32)
{
CDisplayLock display(this);
// FIXME
}
void CXWindowsSecondaryScreen::setClipboard(
const IClipboard* clipboard)
{
// FIXME -- don't use CurrentTime
setDisplayClipboard(clipboard, m_window, CurrentTime);
}
void CXWindowsSecondaryScreen::grabClipboard()
{
// FIXME -- don't use CurrentTime
setDisplayClipboard(NULL, m_window, CurrentTime);
}
void CXWindowsSecondaryScreen::getSize(
SInt32* width, SInt32* height) const
{
getScreenSize(width, height);
}
SInt32 CXWindowsSecondaryScreen::getJumpZoneSize() const
{
return 0;
}
void CXWindowsSecondaryScreen::getClipboard(
IClipboard* clipboard) const
{
// FIXME -- don't use CurrentTime
getDisplayClipboard(clipboard, m_window, CurrentTime);
}
void CXWindowsSecondaryScreen::onOpenDisplay()
{
assert(m_window == None);
CDisplayLock display(this);
// create the cursor hiding window. this window is used to hide the
// cursor when it's not on the screen. the window is hidden as soon
// as the cursor enters the screen or the display's real cursor is
// moved.
XSetWindowAttributes attr;
attr.event_mask = LeaveWindowMask;
attr.do_not_propagate_mask = 0;
attr.override_redirect = True;
attr.cursor = createBlankCursor();
m_window = XCreateWindow(display, getRoot(), 0, 0, 1, 1, 0, 0,
InputOnly, CopyFromParent,
CWDontPropagate | CWEventMask |
CWOverrideRedirect | CWCursor,
&attr);
// become impervious to server grabs
XTestGrabControl(display, True);
// hide the cursor
leaveNoLock(display);
}
void CXWindowsSecondaryScreen::onCloseDisplay()
{
assert(m_window != None);
// no longer impervious to server grabs
CDisplayLock display(this);
XTestGrabControl(display, False);
// destroy window
XDestroyWindow(display, m_window);
m_window = None;
}
void CXWindowsSecondaryScreen::leaveNoLock(Display* display)
{
assert(display != NULL);
assert(m_window != None);
// move hider window under the mouse (rather than moving the mouse
// somewhere else on the screen)
int x, y, dummy;
unsigned int dummyMask;
Window dummyWindow;
XQueryPointer(display, getRoot(), &dummyWindow, &dummyWindow,
&x, &y, &dummy, &dummy, &dummyMask);
XMoveWindow(display, m_window, x, y);
// raise and show the hider window
XMapRaised(display, m_window);
// hide cursor by moving it into the hider window
XWarpPointer(display, None, m_window, 0, 0, 0, 0, 0, 0);
}
unsigned int CXWindowsSecondaryScreen::mapButton(
ButtonID id) const
{
// FIXME -- should use button mapping?
return static_cast<unsigned int>(id);
}
KeyModifierMask CXWindowsSecondaryScreen::mapKey(
Keystrokes& keys,
KeyCode& keycode,
KeyID id, KeyModifierMask mask,
Bool press) const
{
// note -- must have display locked on entry
// the system translates key events into characters depending
// on the modifier key state at the time of the event. to
// generate the right keysym we need to set the modifier key
// states appropriately.
//
// the mask passed by the caller is the desired mask. however,
// there may not be a keycode mapping to generate the desired
// keysym with that mask. we override the bits in the mask
// that cannot be accomodated.
// lookup the a keycode for this key id. also return the
// key modifier mask required.
unsigned int outMask;
if (!findKeyCode(keycode, outMask, id, maskToX(mask))) {
// we cannot generate the desired keysym because no key
// maps to that keysym. just return the current mask.
return m_mask;
}
// if we cannot match the modifier mask then don't return any
// keys and just return the current mask.
if ((outMask & m_modifierMask) != outMask) {
return m_mask;
}
// note if the key is a modifier
ModifierMap::const_iterator index = m_keycodeToModifier.find(keycode);
const bool isModifier = (index != m_keycodeToModifier.end());
// add the key events required to get to the modifier state
// necessary to generate an event yielding id. also save the
// key events required to restore the state. if the key is
// a modifier key then skip this because modifiers should not
// modify modifiers.
Keystrokes undo;
if (outMask != m_mask && !isModifier) {
for (unsigned int i = 0; i < 8; ++i) {
unsigned int bit = (1 << i);
if ((outMask & bit) != (m_mask & bit)) {
// get list of keycodes for the modifier. there must
// be at least one.
const KeyCode* modifierKeys =
&m_modifierToKeycode[i * m_keysPerModifier];
assert(modifierKeys[0] != 0);
if ((outMask & bit) != 0) {
// modifier is not active but should be. if the
// modifier is a toggle then toggle it on with a
// press/release, otherwise activate it with a
// press. use the first keycode for the modifier.
const KeyCode modifierKey = modifierKeys[0];
keys.push_back(std::make_pair(modifierKey, True));
if ((bit & m_toggleModifierMask) != 0) {
keys.push_back(std::make_pair(modifierKey, False));
undo.push_back(std::make_pair(modifierKey, False));
undo.push_back(std::make_pair(modifierKey, True));
}
else {
undo.push_back(std::make_pair(modifierKey, False));
}
}
else {
// modifier is active but should not be. if the
// modifier is a toggle then toggle it off with a
// press/release, otherwise deactivate it with a
// release. we must check each keycode for the
// modifier if not a toggle.
if (bit & m_toggleModifierMask) {
const KeyCode modifierKey = modifierKeys[0];
keys.push_back(std::make_pair(modifierKey, True));
keys.push_back(std::make_pair(modifierKey, False));
undo.push_back(std::make_pair(modifierKey, False));
undo.push_back(std::make_pair(modifierKey, True));
}
else {
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
const KeyCode key = modifierKeys[j];
if (m_keys[key]) {
keys.push_back(std::make_pair(key, False));
undo.push_back(std::make_pair(key, True));
}
}
}
}
}
}
}
// add the key event
keys.push_back(std::make_pair(keycode, press));
// add key events to restore the modifier state. apply events in
// the reverse order that they're stored in undo.
while (!undo.empty()) {
keys.push_back(undo.back());
undo.pop_back();
}
// if the key is a modifier key then compute the modifier map after
// this key is pressed.
mask = m_mask;
if (isModifier) {
// get modifier
const unsigned int modifierBit = (1 << index->second);
// toggle keys modify the state on press if toggling on and on
// release if toggling off. other keys set the bit on press
// and clear the bit on release.
if ((modifierBit & m_toggleModifierMask) != 0) {
if (((mask & modifierBit) == 0) == press)
mask ^= modifierBit;
}
else if (press) {
mask |= modifierBit;
}
else {
// can't reset bit until all keys that set it are released.
// scan those keys to see if any (except keycode) are pressed.
bool down = false;
const KeyCode* modifierKeys = &m_modifierToKeycode[
index->second * m_keysPerModifier];
for (unsigned int j = 0; !down && j < m_keysPerModifier; ++j) {
if (m_keys[modifierKeys[j]])
down = true;
}
if (!down)
mask &= ~modifierBit;
}
}
return mask;
}
bool CXWindowsSecondaryScreen::findKeyCode(
KeyCode& keycode,
unsigned int& maskOut,
KeyID id,
unsigned int maskIn) const
{
// find a keycode to generate id. XKeysymToKeycode() almost does
// what we need but won't tell us which index to use with the
// keycode. return false if there's no keycode to generate id.
KeyCodeMap::const_iterator index = m_keycodeMap.find(id);
if (index == m_keycodeMap.end())
return false;
// save the keycode
keycode = index->second.keycode;
// compute output mask. that's the set of modifiers that need to
// be enabled when the keycode event is encountered in order to
// generate the id keysym and match maskIn. it's possible that
// maskIn wants, say, a shift key to be down but that would make
// it impossible to generate the keysym. in that case we must
// override maskIn.
//
// this is complicated by caps/shift-lock and num-lock. for
// example, if id is a keypad keysym and maskIn indicates that
// shift is not active but keyMask indicates that shift is
// required then we can either activate shift and then send
// the keycode or we can activate num-lock and then send the
// keycode. the latter is better because applications may
// treat, say, shift+Home differently than Home.
maskOut = (maskIn & ~index->second.keyMaskMask);
if (IsKeypadKey(id) || IsPrivateKeypadKey(id)) {
// compare shift state of maskIn and keyMask
const bool agree = ((maskIn & ShiftMask) ==
(index->second.keyMask & ShiftMask));
// get num-lock state
const bool numLockActive = ((m_mask & m_numLockMask) != 0);
// if num-lock is active and the shift states agree or if
// num-lock is not active and the shift states do not agree
// then we should toggle num-lock.
if (numLockActive == agree) {
maskOut |= (maskIn & ShiftMask) |
(index->second.keyMask & ~ShiftMask);
if (numLockActive)
maskOut &= ~m_numLockMask;
else
maskOut |= m_numLockMask;
}
else {
maskOut |= index->second.keyMask;
}
}
else {
// compare shift state of maskIn and keyMask
const bool agree = ((maskIn & ShiftMask) ==
(index->second.keyMask & ShiftMask));
// get caps-lock state
const bool capsLockActive = ((m_mask & m_capsLockMask) != 0);
// if caps-lock is active and the shift states agree or if
// caps-lock is not active and the shift states do not agree
// then we should toggle caps-lock.
if (capsLockActive == agree) {
maskOut |= (maskIn & ShiftMask) |
(index->second.keyMask & ~ShiftMask);
if (capsLockActive)
maskOut &= ~m_capsLockMask;
else
maskOut |= m_capsLockMask;
}
else {
maskOut |= index->second.keyMask;
}
}
return true;
}
unsigned int CXWindowsSecondaryScreen::maskToX(
KeyModifierMask inMask) const
{
// FIXME -- should be configurable. not using Mod3Mask.
unsigned int outMask = 0;
if (inMask & KeyModifierShift)
outMask |= ShiftMask;
if (inMask & KeyModifierControl)
outMask |= ControlMask;
if (inMask & KeyModifierAlt)
outMask |= Mod1Mask;
if (inMask & KeyModifierMeta)
outMask |= Mod4Mask;
if (inMask & KeyModifierCapsLock)
outMask |= LockMask;
if (inMask & KeyModifierNumLock)
outMask |= Mod2Mask;
if (inMask & KeyModifierScrollLock)
outMask |= Mod5Mask;
return outMask;
}
void CXWindowsSecondaryScreen::updateKeys(Display* display)
{
// ask server which keys are pressed
char keys[32];
XQueryKeymap(display, keys);
// transfer to our state
for (unsigned int i = 0, j = 0; i < 32; j += 8, ++i) {
m_keys[j + 0] = ((keys[i] & 0x01) != 0);
m_keys[j + 1] = ((keys[i] & 0x02) != 0);
m_keys[j + 2] = ((keys[i] & 0x04) != 0);
m_keys[j + 3] = ((keys[i] & 0x08) != 0);
m_keys[j + 4] = ((keys[i] & 0x10) != 0);
m_keys[j + 5] = ((keys[i] & 0x20) != 0);
m_keys[j + 6] = ((keys[i] & 0x40) != 0);
m_keys[j + 7] = ((keys[i] & 0x80) != 0);
}
}
void CXWindowsSecondaryScreen::updateModifiers(
Display*)
{
// update active modifier mask
m_mask = 0;
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int bit = (1 << i);
if ((bit & m_toggleModifierMask) == 0) {
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
if (m_keys[m_modifierToKeycode[i * m_keysPerModifier + j]])
m_mask |= bit;
}
}
else {
// FIXME -- not sure how to check current lock states
}
}
}
void CXWindowsSecondaryScreen::updateKeycodeMap(
Display* display)
{
// get the number of keycodes
int minKeycode, maxKeycode;
XDisplayKeycodes(display, &minKeycode, &maxKeycode);
const int numKeycodes = maxKeycode - minKeycode + 1;
// get the keyboard mapping for all keys
int keysymsPerKeycode;
KeySym* keysyms = XGetKeyboardMapping(display,
minKeycode, numKeycodes,
&keysymsPerKeycode);
// restrict keysyms per keycode to 2 because, frankly, i have no
// idea how/what modifiers are used to access keysyms beyond the
// first 2.
int numKeysyms = 2; // keysymsPerKeycode
// initialize
KeyCodeMask entry;
m_keycodeMap.clear();
// insert keys
for (int i = 0; i < numKeycodes; ++i) {
// how many keysyms for this keycode?
int n;
for (n = 0; n < numKeysyms; ++n) {
if (keysyms[i * keysymsPerKeycode + n] == NoSymbol) {
break;
}
}
// move to next keycode if there are no keysyms
if (n == 0) {
continue;
}
// set the mask of modifiers that this keycode uses
entry.keyMaskMask = (n == 1) ? 0 : (ShiftMask | LockMask);
// add entries for this keycode
entry.keycode = static_cast<KeyCode>(minKeycode + i);
for (int j = 0; j < numKeysyms; ++j) {
entry.keyMask = (j == 0) ? 0 : ShiftMask;
m_keycodeMap.insert(std::make_pair(keysyms[i *
keysymsPerKeycode + j], entry));
}
}
// clean up
XFree(keysyms);
}
void CXWindowsSecondaryScreen::updateModifierMap(
Display* display)
{
// get modifier map from server
XModifierKeymap* keymap = XGetModifierMapping(display);
// initialize
m_modifierMask = 0;
m_toggleModifierMask = 0;
m_numLockMask = 0;
m_capsLockMask = 0;
m_keysPerModifier = keymap->max_keypermod;
m_modifierToKeycode.clear();
m_modifierToKeycode.resize(8 * m_keysPerModifier);
// set keycodes and masks
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int bit = (1 << i);
for (unsigned int j = 0; j < m_keysPerModifier; ++j) {
KeyCode keycode = keymap->modifiermap[i * m_keysPerModifier + j];
// save in modifier to keycode
m_modifierToKeycode[i * m_keysPerModifier + j] = keycode;
// save in keycode to modifier
m_keycodeToModifier.insert(std::make_pair(keycode, i));
// modifier is enabled if keycode isn't 0
if (keycode != 0)
m_modifierMask |= bit;
// modifier is a toggle if the keysym is a toggle modifier
const KeySym keysym = XKeycodeToKeysym(display, keycode, 0);
if (isToggleKeysym(keysym)) {
m_toggleModifierMask |= bit;
// note num/caps-lock
if (keysym == XK_Num_Lock)
m_numLockMask |= bit;
if (keysym == XK_Caps_Lock)
m_capsLockMask |= bit;
}
}
}
XFreeModifiermap(keymap);
}
bool CXWindowsSecondaryScreen::isToggleKeysym(KeySym key)
{
switch (key) {
case XK_Caps_Lock:
case XK_Shift_Lock:
case XK_Num_Lock:
case XK_Scroll_Lock:
return true;
default:
return false;
}
}