ecency-mobile/ios/Pods/boost-for-react-native/boost/graph/clustering_coefficient.hpp

160 lines
5.7 KiB
C++
Raw Normal View History

// (C) Copyright 2007-2009 Andrew Sutton
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_CLUSTERING_COEFFICIENT_HPP
#define BOOST_GRAPH_CLUSTERING_COEFFICIENT_HPP
#include <boost/next_prior.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/concept/assert.hpp>
namespace boost
{
namespace detail
{
template <class Graph>
inline typename graph_traits<Graph>::degree_size_type
possible_edges(const Graph& g, std::size_t k, directed_tag)
{
BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
typedef typename graph_traits<Graph>::degree_size_type T;
return T(k) * (T(k) - 1);
}
template <class Graph>
inline typename graph_traits<Graph>::degree_size_type
possible_edges(const Graph& g, size_t k, undirected_tag)
{
// dirty little trick...
return possible_edges(g, k, directed_tag()) / 2;
}
// This template matches directedS and bidirectionalS.
template <class Graph>
inline typename graph_traits<Graph>::degree_size_type
count_edges(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
directed_tag)
{
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph> ));
return (lookup_edge(u, v, g).second ? 1 : 0) +
(lookup_edge(v, u, g).second ? 1 : 0);
}
// This template matches undirectedS
template <class Graph>
inline typename graph_traits<Graph>::degree_size_type
count_edges(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
undirected_tag)
{
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph> ));
return lookup_edge(u, v, g).second ? 1 : 0;
}
}
template <typename Graph, typename Vertex>
inline typename graph_traits<Graph>::degree_size_type
num_paths_through_vertex(const Graph& g, Vertex v)
{
BOOST_CONCEPT_ASSERT(( AdjacencyGraphConcept<Graph> ));
typedef typename graph_traits<Graph>::directed_category Directed;
typedef typename graph_traits<Graph>::adjacency_iterator AdjacencyIterator;
// TODO: There should actually be a set of neighborhood functions
// for things like this (num_neighbors() would be great).
AdjacencyIterator i, end;
boost::tie(i, end) = adjacent_vertices(v, g);
std::size_t k = std::distance(i, end);
return detail::possible_edges(g, k, Directed());
}
template <typename Graph, typename Vertex>
inline typename graph_traits<Graph>::degree_size_type
num_triangles_on_vertex(const Graph& g, Vertex v)
{
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( AdjacencyGraphConcept<Graph> ));
typedef typename graph_traits<Graph>::degree_size_type Degree;
typedef typename graph_traits<Graph>::directed_category Directed;
typedef typename graph_traits<Graph>::adjacency_iterator AdjacencyIterator;
// TODO: I might be able to reduce the requirement from adjacency graph
// to incidence graph by using out edges.
Degree count(0);
AdjacencyIterator i, j, end;
for(boost::tie(i, end) = adjacent_vertices(v, g); i != end; ++i) {
for(j = boost::next(i); j != end; ++j) {
count += detail::count_edges(g, *i, *j, Directed());
}
}
return count;
} /* namespace detail */
template <typename T, typename Graph, typename Vertex>
inline T
clustering_coefficient(const Graph& g, Vertex v)
{
T zero(0);
T routes = T(num_paths_through_vertex(g, v));
return (routes > zero) ?
T(num_triangles_on_vertex(g, v)) / routes : zero;
}
template <typename Graph, typename Vertex>
inline double
clustering_coefficient(const Graph& g, Vertex v)
{ return clustering_coefficient<double>(g, v); }
template <typename Graph, typename ClusteringMap>
inline typename property_traits<ClusteringMap>::value_type
all_clustering_coefficients(const Graph& g, ClusteringMap cm)
{
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
BOOST_CONCEPT_ASSERT(( WritablePropertyMapConcept<ClusteringMap,Vertex> ));
typedef typename property_traits<ClusteringMap>::value_type Coefficient;
Coefficient sum(0);
VertexIterator i, end;
for(boost::tie(i, end) = vertices(g); i != end; ++i) {
Coefficient cc = clustering_coefficient<Coefficient>(g, *i);
put(cm, *i, cc);
sum += cc;
}
return sum / Coefficient(num_vertices(g));
}
template <typename Graph, typename ClusteringMap>
inline typename property_traits<ClusteringMap>::value_type
mean_clustering_coefficient(const Graph& g, ClusteringMap cm)
{
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<ClusteringMap,Vertex> ));
typedef typename property_traits<ClusteringMap>::value_type Coefficient;
Coefficient cc(0);
VertexIterator i, end;
for(boost::tie(i, end) = vertices(g); i != end; ++i) {
cc += get(cm, *i);
}
return cc / Coefficient(num_vertices(g));
}
} /* namespace boost */
#endif