ecency-mobile/ios/Pods/Folly/folly/Fingerprint.h

282 lines
7.8 KiB
C
Raw Normal View History

/*
* Copyright 2016 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Compute 64-, 96-, and 128-bit Rabin fingerprints, as described in
* Michael O. Rabin (1981)
* Fingerprinting by Random Polynomials
* Center for Research in Computing Technology, Harvard University
* Tech Report TR-CSE-03-01
*
* The implementation follows the optimization described in
* Andrei Z. Broder (1993)
* Some applications of Rabin's fingerprinting method
*
* extended for fingerprints larger than 64 bits, and modified to use
* 64-bit instead of 32-bit integers for computation.
*
* The precomputed tables are in FingerprintTable.cpp, which is automatically
* generated by ComputeFingerprintTable.cpp.
*
* Benchmarked on 10/13/2009 on a 2.5GHz quad-core Xeon L5420,
* - Fingerprint<64>::update64() takes about 12ns
* - Fingerprint<96>::update64() takes about 30ns
* - Fingerprint<128>::update128() takes about 30ns
* (unsurprisingly, Fingerprint<96> and Fingerprint<128> take the
* same amount of time, as they both use 128-bit operations; the least
* significant 32 bits of Fingerprint<96> will always be 0)
*
* @author Tudor Bosman (tudorb@facebook.com)
*/
#pragma once
#include <cstdint>
#include <folly/Range.h>
namespace folly {
namespace detail {
template <int BITS>
struct FingerprintTable {
static const uint64_t poly[1 + (BITS - 1) / 64];
static const uint64_t table[8][256][1 + (BITS - 1) / 64];
};
template <int BITS>
const uint64_t FingerprintTable<BITS>::poly[1 + (BITS - 1) / 64] = {};
template <int BITS>
const uint64_t FingerprintTable<BITS>::table[8][256][1 + (BITS - 1) / 64] = {};
#define FOLLY_DECLARE_FINGERPRINT_TABLES(BITS) \
template <> \
const uint64_t FingerprintTable<BITS>::poly[1 + (BITS - 1) / 64]; \
template <> \
const uint64_t FingerprintTable<BITS>::table[8][256][1 + (BITS - 1) / 64]
FOLLY_DECLARE_FINGERPRINT_TABLES(64);
FOLLY_DECLARE_FINGERPRINT_TABLES(96);
FOLLY_DECLARE_FINGERPRINT_TABLES(128);
#undef FOLLY_DECLARE_FINGERPRINT_TABLES
} // namespace detail
/**
* Compute the Rabin fingerprint.
*
* TODO(tudorb): Extend this to allow removing values from the computed
* fingerprint (so we can fingerprint a sliding window, as in the Rabin-Karp
* string matching algorithm)
*
* update* methods return *this, so you can chain them together:
* Fingerprint<96>().update8(x).update(str).update64(val).write(output);
*/
template <int BITS>
class Fingerprint {
public:
Fingerprint() {
// Use a non-zero starting value. We'll use (1 << (BITS-1))
fp_[0] = 1ULL << 63;
for (int i = 1; i < size(); i++)
fp_[i] = 0;
}
Fingerprint& update8(uint8_t v) {
uint8_t out = shlor8(v);
xortab(detail::FingerprintTable<BITS>::table[0][out]);
return *this;
}
// update32 and update64 are convenience functions to update the fingerprint
// with 4 and 8 bytes at a time. They are faster than calling update8
// in a loop. They process the bytes in big-endian order.
Fingerprint& update32(uint32_t v) {
uint32_t out = shlor32(v);
for (int i = 0; i < 4; i++) {
xortab(detail::FingerprintTable<BITS>::table[i][out&0xff]);
out >>= 8;
}
return *this;
}
Fingerprint& update64(uint64_t v) {
uint64_t out = shlor64(v);
for (int i = 0; i < 8; i++) {
xortab(detail::FingerprintTable<BITS>::table[i][out&0xff]);
out >>= 8;
}
return *this;
}
Fingerprint& update(StringPiece str) {
// TODO(tudorb): We could be smart and do update64 or update32 if aligned
for (auto c : str) {
update8(uint8_t(c));
}
return *this;
}
/**
* Return the number of uint64s needed to hold the fingerprint value.
*/
static int size() {
return 1 + (BITS-1)/64;
}
/**
* Write the computed fingeprint to an array of size() uint64_t's.
* For Fingerprint<64>, size()==1; we write 64 bits in out[0]
* For Fingerprint<96>, size()==2; we write 64 bits in out[0] and
* the most significant 32 bits of out[1]
* For Fingerprint<128>, size()==2; we write 64 bits in out[0] and
* 64 bits in out[1].
*/
void write(uint64_t* out) const {
for (int i = 0; i < size(); i++) {
out[i] = fp_[i];
}
}
private:
// XOR the fingerprint with a value from one of the tables.
void xortab(const uint64_t* tab) {
for (int i = 0; i < size(); i++) {
fp_[i] ^= tab[i];
}
}
// Helper functions: shift the fingerprint value left by 8/32/64 bits,
// return the "out" value (the bits that were shifted out), and add "v"
// in the bits on the right.
uint8_t shlor8(uint8_t v);
uint32_t shlor32(uint32_t v);
uint64_t shlor64(uint64_t v);
uint64_t fp_[1 + (BITS-1)/64];
};
// Convenience functions
/**
* Return the 64-bit Rabin fingerprint of a string.
*/
inline uint64_t fingerprint64(StringPiece str) {
uint64_t fp;
Fingerprint<64>().update(str).write(&fp);
return fp;
}
/**
* Compute the 96-bit Rabin fingerprint of a string.
* Return the 64 most significant bits in *msb, and the 32 least significant
* bits in *lsb.
*/
inline void fingerprint96(StringPiece str,
uint64_t* msb, uint32_t* lsb) {
uint64_t fp[2];
Fingerprint<96>().update(str).write(fp);
*msb = fp[0];
*lsb = (uint32_t)(fp[1] >> 32);
}
/**
* Compute the 128-bit Rabin fingerprint of a string.
* Return the 64 most significant bits in *msb, and the 64 least significant
* bits in *lsb.
*/
inline void fingerprint128(StringPiece str,
uint64_t* msb, uint64_t* lsb) {
uint64_t fp[2];
Fingerprint<128>().update(str).write(fp);
*msb = fp[0];
*lsb = fp[1];
}
template <>
inline uint8_t Fingerprint<64>::shlor8(uint8_t v) {
uint8_t out = (uint8_t)(fp_[0] >> 56);
fp_[0] = (fp_[0] << 8) | ((uint64_t)v);
return out;
}
template <>
inline uint32_t Fingerprint<64>::shlor32(uint32_t v) {
uint32_t out = (uint32_t)(fp_[0] >> 32);
fp_[0] = (fp_[0] << 32) | ((uint64_t)v);
return out;
}
template <>
inline uint64_t Fingerprint<64>::shlor64(uint64_t v) {
uint64_t out = fp_[0];
fp_[0] = v;
return out;
}
template <>
inline uint8_t Fingerprint<96>::shlor8(uint8_t v) {
uint8_t out = (uint8_t)(fp_[0] >> 56);
fp_[0] = (fp_[0] << 8) | (fp_[1] >> 56);
fp_[1] = (fp_[1] << 8) | ((uint64_t)v << 32);
return out;
}
template <>
inline uint32_t Fingerprint<96>::shlor32(uint32_t v) {
uint32_t out = (uint32_t)(fp_[0] >> 32);
fp_[0] = (fp_[0] << 32) | (fp_[1] >> 32);
fp_[1] = ((uint64_t)v << 32);
return out;
}
template <>
inline uint64_t Fingerprint<96>::shlor64(uint64_t v) {
uint64_t out = fp_[0];
fp_[0] = fp_[1] | (v >> 32);
fp_[1] = v << 32;
return out;
}
template <>
inline uint8_t Fingerprint<128>::shlor8(uint8_t v) {
uint8_t out = (uint8_t)(fp_[0] >> 56);
fp_[0] = (fp_[0] << 8) | (fp_[1] >> 56);
fp_[1] = (fp_[1] << 8) | ((uint64_t)v);
return out;
}
template <>
inline uint32_t Fingerprint<128>::shlor32(uint32_t v) {
uint32_t out = (uint32_t)(fp_[0] >> 32);
fp_[0] = (fp_[0] << 32) | (fp_[1] >> 32);
fp_[1] = (fp_[1] << 32) | ((uint64_t)v);
return out;
}
template <>
inline uint64_t Fingerprint<128>::shlor64(uint64_t v) {
uint64_t out = fp_[0];
fp_[0] = fp_[1];
fp_[1] = v;
return out;
}
} // namespace folly