mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-23 21:35:04 +03:00
314 lines
12 KiB
C++
314 lines
12 KiB
C++
|
|
||
|
//=======================================================================
|
||
|
// Copyright 2008
|
||
|
// Author: Matyas W Egyhazy
|
||
|
//
|
||
|
// Distributed under the Boost Software License, Version 1.0. (See
|
||
|
// accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
//=======================================================================
|
||
|
|
||
|
#ifndef BOOST_GRAPH_METRIC_TSP_APPROX_HPP
|
||
|
#define BOOST_GRAPH_METRIC_TSP_APPROX_HPP
|
||
|
|
||
|
// metric_tsp_approx
|
||
|
// Generates an approximate tour solution for the traveling salesperson
|
||
|
// problem in polynomial time. The current algorithm guarantees a tour with a
|
||
|
// length at most as long as 2x optimal solution. The graph should have
|
||
|
// 'natural' (metric) weights such that the triangle inequality is maintained.
|
||
|
// Graphs must be fully interconnected.
|
||
|
|
||
|
// TODO:
|
||
|
// There are a couple of improvements that could be made.
|
||
|
// 1) Change implementation to lower uppper bound Christofides heuristic
|
||
|
// 2) Implement a less restrictive TSP heuristic (one that does not rely on
|
||
|
// triangle inequality).
|
||
|
// 3) Determine if the algorithm can be implemented without creating a new
|
||
|
// graph.
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
#include <boost/shared_ptr.hpp>
|
||
|
#include <boost/concept_check.hpp>
|
||
|
#include <boost/graph/graph_traits.hpp>
|
||
|
#include <boost/graph/graph_as_tree.hpp>
|
||
|
#include <boost/graph/adjacency_list.hpp>
|
||
|
#include <boost/graph/prim_minimum_spanning_tree.hpp>
|
||
|
#include <boost/graph/lookup_edge.hpp>
|
||
|
#include <boost/throw_exception.hpp>
|
||
|
|
||
|
namespace boost
|
||
|
{
|
||
|
// Define a concept for the concept-checking library.
|
||
|
template <typename Visitor, typename Graph>
|
||
|
struct TSPVertexVisitorConcept
|
||
|
{
|
||
|
private:
|
||
|
Visitor vis_;
|
||
|
public:
|
||
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
||
|
|
||
|
BOOST_CONCEPT_USAGE(TSPVertexVisitorConcept)
|
||
|
{
|
||
|
Visitor vis(vis_); // require copy construction
|
||
|
Graph g(1);
|
||
|
Vertex v(*vertices(g).first);
|
||
|
vis.visit_vertex(v, g); // require visit_vertex
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Tree visitor that keeps track of a preorder traversal of a tree
|
||
|
// TODO: Consider migrating this to the graph_as_tree header.
|
||
|
// TODO: Parameterize the underlying stores so it doesn't have to be a vector.
|
||
|
template<typename Node, typename Tree> class PreorderTraverser
|
||
|
{
|
||
|
private:
|
||
|
std::vector<Node>& path_;
|
||
|
public:
|
||
|
typedef typename std::vector<Node>::const_iterator const_iterator;
|
||
|
|
||
|
PreorderTraverser(std::vector<Node>& p) : path_(p) {}
|
||
|
|
||
|
void preorder(Node n, const Tree&)
|
||
|
{ path_.push_back(n); }
|
||
|
|
||
|
void inorder(Node, const Tree&) const {}
|
||
|
void postorder(Node, const Tree&) const {}
|
||
|
|
||
|
const_iterator begin() const { return path_.begin(); }
|
||
|
const_iterator end() const { return path_.end(); }
|
||
|
};
|
||
|
|
||
|
// Forward declarations
|
||
|
template <typename> class tsp_tour_visitor;
|
||
|
template <typename, typename, typename, typename> class tsp_tour_len_visitor;
|
||
|
|
||
|
template<typename VertexListGraph, typename OutputIterator>
|
||
|
void metric_tsp_approx_tour(VertexListGraph& g, OutputIterator o)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, *vertices(g).first,
|
||
|
get(edge_weight, g), get(vertex_index, g),
|
||
|
tsp_tour_visitor<OutputIterator>(o));
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename WeightMap, typename OutputIterator>
|
||
|
void metric_tsp_approx_tour(VertexListGraph& g, WeightMap w, OutputIterator o)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, *vertices(g).first,
|
||
|
w, tsp_tour_visitor<OutputIterator>(o));
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename OutputIterator>
|
||
|
void metric_tsp_approx_tour_from_vertex(VertexListGraph& g,
|
||
|
typename graph_traits<VertexListGraph>::vertex_descriptor start,
|
||
|
OutputIterator o)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, start, get(edge_weight, g),
|
||
|
get(vertex_index, g), tsp_tour_visitor<OutputIterator>(o));
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename WeightMap,
|
||
|
typename OutputIterator>
|
||
|
void metric_tsp_approx_tour_from_vertex(VertexListGraph& g,
|
||
|
typename graph_traits<VertexListGraph>::vertex_descriptor start,
|
||
|
WeightMap w, OutputIterator o)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, start, w, get(vertex_index, g),
|
||
|
tsp_tour_visitor<OutputIterator>(o));
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename TSPVertexVisitor>
|
||
|
void metric_tsp_approx(VertexListGraph& g, TSPVertexVisitor vis)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, *vertices(g).first,
|
||
|
get(edge_weight, g), get(vertex_index, g), vis);
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename Weightmap,
|
||
|
typename VertexIndexMap, typename TSPVertexVisitor>
|
||
|
void metric_tsp_approx(VertexListGraph& g, Weightmap w,
|
||
|
TSPVertexVisitor vis)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, *vertices(g).first, w,
|
||
|
get(vertex_index, g), vis);
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename WeightMap,
|
||
|
typename VertexIndexMap, typename TSPVertexVisitor>
|
||
|
void metric_tsp_approx(VertexListGraph& g, WeightMap w, VertexIndexMap id,
|
||
|
TSPVertexVisitor vis)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, *vertices(g).first, w, id, vis);
|
||
|
}
|
||
|
|
||
|
template<typename VertexListGraph, typename WeightMap,
|
||
|
typename TSPVertexVisitor>
|
||
|
void metric_tsp_approx_from_vertex(VertexListGraph& g,
|
||
|
typename graph_traits<VertexListGraph>::vertex_descriptor start,
|
||
|
WeightMap w, TSPVertexVisitor vis)
|
||
|
{
|
||
|
metric_tsp_approx_from_vertex(g, start, w, get(vertex_index, g), vis);
|
||
|
}
|
||
|
|
||
|
template <
|
||
|
typename VertexListGraph,
|
||
|
typename WeightMap,
|
||
|
typename VertexIndexMap,
|
||
|
typename TSPVertexVisitor>
|
||
|
void metric_tsp_approx_from_vertex(const VertexListGraph& g,
|
||
|
typename graph_traits<VertexListGraph>::vertex_descriptor start,
|
||
|
WeightMap weightmap,
|
||
|
VertexIndexMap indexmap,
|
||
|
TSPVertexVisitor vis)
|
||
|
{
|
||
|
using namespace boost;
|
||
|
using namespace std;
|
||
|
|
||
|
BOOST_CONCEPT_ASSERT((VertexListGraphConcept<VertexListGraph>));
|
||
|
BOOST_CONCEPT_ASSERT((TSPVertexVisitorConcept<TSPVertexVisitor, VertexListGraph>));
|
||
|
|
||
|
// Types related to the input graph (GVertex is a template parameter).
|
||
|
typedef typename graph_traits<VertexListGraph>::vertex_descriptor GVertex;
|
||
|
typedef typename graph_traits<VertexListGraph>::vertex_iterator GVItr;
|
||
|
|
||
|
// We build a custom graph in this algorithm.
|
||
|
typedef adjacency_list <vecS, vecS, directedS, no_property, no_property > MSTImpl;
|
||
|
typedef graph_traits<MSTImpl>::vertex_descriptor Vertex;
|
||
|
typedef graph_traits<MSTImpl>::vertex_iterator VItr;
|
||
|
|
||
|
// And then re-cast it as a tree.
|
||
|
typedef iterator_property_map<vector<Vertex>::iterator, property_map<MSTImpl, vertex_index_t>::type> ParentMap;
|
||
|
typedef graph_as_tree<MSTImpl, ParentMap> Tree;
|
||
|
typedef tree_traits<Tree>::node_descriptor Node;
|
||
|
|
||
|
// A predecessor map.
|
||
|
typedef vector<GVertex> PredMap;
|
||
|
typedef iterator_property_map<typename PredMap::iterator, VertexIndexMap> PredPMap;
|
||
|
|
||
|
PredMap preds(num_vertices(g));
|
||
|
PredPMap pred_pmap(preds.begin(), indexmap);
|
||
|
|
||
|
// Compute a spanning tree over the in put g.
|
||
|
prim_minimum_spanning_tree(g, pred_pmap,
|
||
|
root_vertex(start)
|
||
|
.vertex_index_map(indexmap)
|
||
|
.weight_map(weightmap));
|
||
|
|
||
|
// Build a MST using the predecessor map from prim mst
|
||
|
MSTImpl mst(num_vertices(g));
|
||
|
std::size_t cnt = 0;
|
||
|
pair<VItr, VItr> mst_verts(vertices(mst));
|
||
|
for(typename PredMap::iterator vi(preds.begin()); vi != preds.end(); ++vi, ++cnt)
|
||
|
{
|
||
|
if(indexmap[*vi] != cnt) {
|
||
|
add_edge(*next(mst_verts.first, indexmap[*vi]),
|
||
|
*next(mst_verts.first, cnt), mst);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Build a tree abstraction over the MST.
|
||
|
vector<Vertex> parent(num_vertices(mst));
|
||
|
Tree t(mst, *vertices(mst).first,
|
||
|
make_iterator_property_map(parent.begin(),
|
||
|
get(vertex_index, mst)));
|
||
|
|
||
|
// Create tour using a preorder traversal of the mst
|
||
|
vector<Node> tour;
|
||
|
PreorderTraverser<Node, Tree> tvis(tour);
|
||
|
traverse_tree(indexmap[start], t, tvis);
|
||
|
|
||
|
pair<GVItr, GVItr> g_verts(vertices(g));
|
||
|
for(PreorderTraverser<Node, Tree>::const_iterator curr(tvis.begin());
|
||
|
curr != tvis.end(); ++curr)
|
||
|
{
|
||
|
// TODO: This is will be O(n^2) if vertex storage of g != vecS.
|
||
|
GVertex v = *next(g_verts.first, get(vertex_index, mst)[*curr]);
|
||
|
vis.visit_vertex(v, g);
|
||
|
}
|
||
|
|
||
|
// Connect back to the start of the tour
|
||
|
vis.visit_vertex(start, g);
|
||
|
}
|
||
|
|
||
|
// Default tsp tour visitor that puts the tour in an OutputIterator
|
||
|
template <typename OutItr>
|
||
|
class tsp_tour_visitor
|
||
|
{
|
||
|
OutItr itr_;
|
||
|
public:
|
||
|
tsp_tour_visitor(OutItr itr)
|
||
|
: itr_(itr)
|
||
|
{ }
|
||
|
|
||
|
template <typename Vertex, typename Graph>
|
||
|
void visit_vertex(Vertex v, const Graph&)
|
||
|
{
|
||
|
BOOST_CONCEPT_ASSERT((OutputIterator<OutItr, Vertex>));
|
||
|
*itr_++ = v;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
// Tsp tour visitor that adds the total tour length.
|
||
|
template<typename Graph, typename WeightMap, typename OutIter, typename Length>
|
||
|
class tsp_tour_len_visitor
|
||
|
{
|
||
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
||
|
BOOST_CONCEPT_ASSERT((OutputIterator<OutIter, Vertex>));
|
||
|
|
||
|
OutIter iter_;
|
||
|
Length& tourlen_;
|
||
|
WeightMap& wmap_;
|
||
|
Vertex previous_;
|
||
|
|
||
|
// Helper function for getting the null vertex.
|
||
|
Vertex null()
|
||
|
{ return graph_traits<Graph>::null_vertex(); }
|
||
|
|
||
|
public:
|
||
|
tsp_tour_len_visitor(Graph const&, OutIter iter, Length& l, WeightMap& map)
|
||
|
: iter_(iter), tourlen_(l), wmap_(map), previous_(null())
|
||
|
{ }
|
||
|
|
||
|
void visit_vertex(Vertex v, const Graph& g)
|
||
|
{
|
||
|
typedef typename graph_traits<Graph>::edge_descriptor Edge;
|
||
|
|
||
|
// If it is not the start, then there is a
|
||
|
// previous vertex
|
||
|
if(previous_ != null())
|
||
|
{
|
||
|
// NOTE: For non-adjacency matrix graphs g, this bit of code
|
||
|
// will be linear in the degree of previous_ or v. A better
|
||
|
// solution would be to visit edges of the graph, but that
|
||
|
// would require revisiting the core algorithm.
|
||
|
Edge e;
|
||
|
bool found;
|
||
|
boost::tie(e, found) = lookup_edge(previous_, v, g);
|
||
|
if(!found) {
|
||
|
BOOST_THROW_EXCEPTION(not_complete());
|
||
|
}
|
||
|
|
||
|
tourlen_ += wmap_[e];
|
||
|
}
|
||
|
|
||
|
previous_ = v;
|
||
|
*iter_++ = v;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Object generator(s)
|
||
|
template <typename OutIter>
|
||
|
inline tsp_tour_visitor<OutIter>
|
||
|
make_tsp_tour_visitor(OutIter iter)
|
||
|
{ return tsp_tour_visitor<OutIter>(iter); }
|
||
|
|
||
|
template <typename Graph, typename WeightMap, typename OutIter, typename Length>
|
||
|
inline tsp_tour_len_visitor<Graph, WeightMap, OutIter, Length>
|
||
|
make_tsp_tour_len_visitor(Graph const& g, OutIter iter, Length& l, WeightMap map)
|
||
|
{ return tsp_tour_len_visitor<Graph, WeightMap, OutIter, Length>(g, iter, l, map); }
|
||
|
|
||
|
} //boost
|
||
|
|
||
|
#endif // BOOST_GRAPH_METRIC_TSP_APPROX_HPP
|