ecency-mobile/ios/Pods/Folly/folly/Math.h

202 lines
8.0 KiB
C
Raw Normal View History

/*
* Copyright 2016 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Some arithmetic functions that seem to pop up or get hand-rolled a lot.
* So far they are all focused on integer division.
*/
#pragma once
#include <stdint.h>
#include <limits>
#include <type_traits>
namespace folly {
namespace detail {
template <typename T>
inline constexpr T divFloorBranchless(T num, T denom) {
// floor != trunc when the answer isn't exact and truncation went the
// wrong way (truncation went toward positive infinity). That happens
// when the true answer is negative, which happens when num and denom
// have different signs. The following code compiles branch-free on
// many platforms.
return (num / denom) +
((num % denom) != 0 ? 1 : 0) *
(std::is_signed<T>::value && (num ^ denom) < 0 ? -1 : 0);
}
template <typename T>
inline constexpr T divFloorBranchful(T num, T denom) {
// First case handles negative result by preconditioning numerator.
// Preconditioning decreases the magnitude of the numerator, which is
// itself sign-dependent. Second case handles zero or positive rational
// result, where trunc and floor are the same.
return std::is_signed<T>::value && (num ^ denom) < 0 && num != 0
? (num + (num > 0 ? -1 : 1)) / denom - 1
: num / denom;
}
template <typename T>
inline constexpr T divCeilBranchless(T num, T denom) {
// ceil != trunc when the answer isn't exact (truncation occurred)
// and truncation went away from positive infinity. That happens when
// the true answer is positive, which happens when num and denom have
// the same sign.
return (num / denom) +
((num % denom) != 0 ? 1 : 0) *
(std::is_signed<T>::value && (num ^ denom) < 0 ? 0 : 1);
}
template <typename T>
inline constexpr T divCeilBranchful(T num, T denom) {
// First case handles negative or zero rational result, where trunc and ceil
// are the same.
// Second case handles positive result by preconditioning numerator.
// Preconditioning decreases the magnitude of the numerator, which is
// itself sign-dependent.
return (std::is_signed<T>::value && (num ^ denom) < 0) || num == 0
? num / denom
: (num + (num > 0 ? -1 : 1)) / denom + 1;
}
template <typename T>
inline constexpr T divRoundAwayBranchless(T num, T denom) {
// away != trunc whenever truncation actually occurred, which is when
// there is a non-zero remainder. If the unrounded result is negative
// then fixup moves it toward negative infinity. If the unrounded
// result is positive then adjustment makes it larger.
return (num / denom) +
((num % denom) != 0 ? 1 : 0) *
(std::is_signed<T>::value && (num ^ denom) < 0 ? -1 : 1);
}
template <typename T>
inline constexpr T divRoundAwayBranchful(T num, T denom) {
// First case of second ternary operator handles negative rational
// result, which is the same as divFloor. Second case of second ternary
// operator handles positive result, which is the same as divCeil.
// Zero case is separated for simplicity.
return num == 0 ? 0
: (num + (num > 0 ? -1 : 1)) / denom +
(std::is_signed<T>::value && (num ^ denom) < 0 ? -1 : 1);
}
template <typename N, typename D>
using IdivResultType = typename std::enable_if<
std::is_integral<N>::value && std::is_integral<D>::value &&
!std::is_same<N, bool>::value &&
!std::is_same<D, bool>::value,
decltype(N{1} / D{1})>::type;
}
#if defined(__arm__) && !FOLLY_A64
constexpr auto kIntegerDivisionGivesRemainder = false;
#else
constexpr auto kIntegerDivisionGivesRemainder = true;
#endif
/**
* Returns num/denom, rounded toward negative infinity. Put another way,
* returns the largest integral value that is less than or equal to the
* exact (not rounded) fraction num/denom.
*
* The matching remainder (num - divFloor(num, denom) * denom) can be
* negative only if denom is negative, unlike in truncating division.
* Note that for unsigned types this is the same as the normal integer
* division operator. divFloor is equivalent to python's integral division
* operator //.
*
* This function undergoes the same integer promotion rules as a
* built-in operator, except that we don't allow bool -> int promotion.
* This function is undefined if denom == 0. It is also undefined if the
* result type T is a signed type, num is std::numeric_limits<T>::min(),
* and denom is equal to -1 after conversion to the result type.
*/
template <typename N, typename D>
inline constexpr detail::IdivResultType<N, D> divFloor(N num, D denom) {
using R = decltype(num / denom);
return kIntegerDivisionGivesRemainder && std::is_signed<R>::value
? detail::divFloorBranchless<R>(num, denom)
: detail::divFloorBranchful<R>(num, denom);
}
/**
* Returns num/denom, rounded toward positive infinity. Put another way,
* returns the smallest integral value that is greater than or equal to
* the exact (not rounded) fraction num/denom.
*
* This function undergoes the same integer promotion rules as a
* built-in operator, except that we don't allow bool -> int promotion.
* This function is undefined if denom == 0. It is also undefined if the
* result type T is a signed type, num is std::numeric_limits<T>::min(),
* and denom is equal to -1 after conversion to the result type.
*/
template <typename N, typename D>
inline constexpr detail::IdivResultType<N, D> divCeil(N num, D denom) {
using R = decltype(num / denom);
return kIntegerDivisionGivesRemainder && std::is_signed<R>::value
? detail::divCeilBranchless<R>(num, denom)
: detail::divCeilBranchful<R>(num, denom);
}
/**
* Returns num/denom, rounded toward zero. If num and denom are non-zero
* and have different signs (so the unrounded fraction num/denom is
* negative), returns divCeil, otherwise returns divFloor. If T is an
* unsigned type then this is always equal to divFloor.
*
* Note that this is the same as the normal integer division operator,
* at least since C99 (before then the rounding for negative results was
* implementation defined). This function is here for completeness and
* as a place to hang this comment.
*
* This function undergoes the same integer promotion rules as a
* built-in operator, except that we don't allow bool -> int promotion.
* This function is undefined if denom == 0. It is also undefined if the
* result type T is a signed type, num is std::numeric_limits<T>::min(),
* and denom is equal to -1 after conversion to the result type.
*/
template <typename N, typename D>
inline constexpr detail::IdivResultType<N, D> divTrunc(N num, D denom) {
return num / denom;
}
/**
* Returns num/denom, rounded away from zero. If num and denom are
* non-zero and have different signs (so the unrounded fraction num/denom
* is negative), returns divFloor, otherwise returns divCeil. If T is
* an unsigned type then this is always equal to divCeil.
*
* This function undergoes the same integer promotion rules as a
* built-in operator, except that we don't allow bool -> int promotion.
* This function is undefined if denom == 0. It is also undefined if the
* result type T is a signed type, num is std::numeric_limits<T>::min(),
* and denom is equal to -1 after conversion to the result type.
*/
template <typename N, typename D>
inline constexpr detail::IdivResultType<N, D> divRoundAway(N num, D denom) {
using R = decltype(num / denom);
return kIntegerDivisionGivesRemainder && std::is_signed<R>::value
? detail::divRoundAwayBranchless<R>(num, denom)
: detail::divRoundAwayBranchful<R>(num, denom);
}
} // namespace folly